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Abstract

The rapidly growing amount of biological data on the internet and the increasing need for large-scale analyses mandate
improvements to the management of taxon-centric information. This information, traditionally managed by taxonomists,
is now transforming into a web-based infrastructure. The complexity and narrative quality of the biological sciences
require an information management framework that is sensitive to the scale, richness, character, and heterogeneity of the
discipline. Given that the names of organisms offer us a nearly universal system for indexing biological data objects, a
names-based cyberinfrastructure has the capacity to index the totality of available biological information and to aggre-
gate taxon-centric data over a broad scale. In order to serve its role, this infrastructure should incorporate thirteen princi-
ples that are proposed here.
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Introduction

Shifts in the agenda of the biological sciences in the last two decades have been driven by diverse factors such
as unifying molecular technologies, the challenges of climate change or, associated with the latter, the “biodi-
versity crisis” — the loss of biodiversity at all levels. In the latter area, both predictions and preparations for
change will need analyses that integrate biospheric, economic, historical, social and geospheric information
and on a scale that has previously not been considered. Biologists and conservationists need to synthesise dif-
ferent layers of understanding in order to “understand the whole” (Bisby 2000) and they require the availabil-
ity of this information at an ever-increasing rate (De Carvalho et al. 2008). The extraction of understanding
from the data will be empowered by an organisational framework that can interconnect biological information
distributed in heterogeneous environments across the Internet. Ideally, as articulated by E.O. Wilson (2003),
we should look to a future in which any piece of information on a species on the Internet will provide a gate-
way to all other information on the same species. With such interconnections in place, users will be able to
index biological data objects, promote their atomisation into the smallest semantic parts and through those
processes, create a vast communal pool of readily available taxon-centric data, making novel large-scale anal-
yses possible.

Mayr (2004) correctly pointed out that biology is an unusual scientific discipline. The management of bio-
logical information will require solutions that are sensitive to the oddities of biology. Traditionally, biological
knowledge has been catalogued and organised by taxonomists. From the time of Linnaeus — “Filum ariad-
neum botanices est systema, sine quo chaos est res herbaria” (Linnaeus 1751), taxonomy has effectively
unifed biological knowledge and prevented its disarray. The declining numbers in the taxonomic community,
as well as the growing deluge of biodata (termed “the second bioinformatics crisis” by Godfray, 2002),
require us to come up with new ways of managing biodiversity information (Godfray 2002, Bortulus 2008).
The vision presented here is one of a biological information management environment that embeds taxonomic
and nomenclatorial thinking into the design of databases, data schemas, transfer protocols, applications, etc.
with the intent of assembling an infrastructure capable of managing any piece of information of any type or
size for any taxon. 

Taxonomy as information management system relies on two elements that have long served the unique
character of biology: names and hierarchies. Names are associated with most usable data objects and so are
the common denominator of heterogeneous information coming from distributed sources. In the world of con-
temporary informatics, names can serve as metadata for all data objects that relate to taxa. That is, they can be
used to form the foundation of an indexing system for all biology. Hierarchical arrangements, such as taxo-
nomic, phylogenetic or any other kind of classification, specify relationships between elements by placing
them into nested structures. They serve as ontologies which can be used to add higher levels of organization to
the metadata and the data they include can be used to test hypotheses represented by the ontologies.

The use of names as metadata, of hierarchies as ontologies, and of both for data management are not usu-
ally considered to be part of taxonomy, and may run counter to principles of compliance with the nomencla-
tural codes. As an example, algorithmic indexing of digital data, such as the content of the Biodiversity
Heritage Library (BHL, http://www.biodiversitylibrary.org) has to rely on name-recognition tools (e.g. Kon-
ing et al. 2005). Yet, many “names” in documents are obsolete or misspelled. If we are to index and recover
all information, we need to catalog and cross-reference not only the code-compliant names but also the
archaic and the misspellings. The implementation of this vision is not straightforward as a names-based infor-
mation management has to overcome a number of problems, of which the most significant are the “many
names for one taxon” (synonymy) and the “same name for many taxa” (homonymy) problems. Both confound
the collation of all relevant information about the same species. In the case of synonyms, a simple search with
one name will fail to find information linked to other names used for the same taxon, and in the case of hom-
onyms, a search will draw together information on different, often unrelated, taxa. These problems have
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always been at the mainstream of the descriptive taxonomy sensu Godfray (Godfray, 2002). A names-based
cyberinfrastructure therefore needs to emulate the practices of taxonomists who have traditionally managed
information in this area — that is, the infrastructure must be “taxonomically intelligent”. Taxonomically intel-
ligent names-based information management has an enormous potential for the biological sciences, especially
if those developments are designed to allow machine-to-machine dialog through the use of globally unique
identifiers, standardised data schemas, and interoperable data transfer protocols (Page, 2006).

The Encyclopedia of Life (EOL, http://www.eol.org) is the first major integrative project within biology
that is explicitly based on these principles. To be able to fulfil its goal of delivering Web pages for every spe-
cies it must be able to automatically aggregate taxon-centric information across the full spectrum of biodiver-
sity. EOL relies on names-based information management. We have identified and discuss here thirteen
features that we believe a taxonomically intelligent names-based cyberinfrastructure must have if it is to be
effective for all types of organisms, and for all pieces of information, past, present and future. 

The principles

Inclusive

A names-based infrastructure that is intended for managing information about any and all forms of life, must
be designed to include all entities that satisfy any definition of “life” — whether viruses (and even prions),
both types of prokaryotes, protists, plants, animals, or fungi. This requires that the infrastructure move in a
direction opposite to the current trend of fragmentation into subdisciplines. This fragmentation led to similar
but mostly independent codes of nomenclature, whereas the goal of biodiversity binformatics should be a sin-
gle unified system. All codes seek to establish stability and to remove ambiguity in the use of names. They
foster these goals within the jurisdiction of each code, but the independence of the codes can promote ambigu-
ity when it comes to organisms that do not fit comfortably within one particular code (the ambiregnal names;
Corliss 1995). The emerging infrastructure must not only apply to all organisms, but also to respect all code-
based nomenclatural practices inclusive of the more innovative PhyloCode (Cantino & de Queiroz 2000).
This code departs from traditional nomenclatural practices by seeking to regulate names that depict mono-
phyletic and holophyetic clades by explicitly using phylogenetic principles. Irrespective of the logic by which
they are derived, the names act as metadata and will be organized within an ontology. A names based infra-
structure must accommodate such schemas if it is to serve the advocates of this phylogenetically motivated
nomenclature. 

Comprehensive

If a system is to be capable of indexing any biological data object, it must be capable not only of accommodat-
ing some information about organism, but all information on all organisms. That will require the architecture
to include any identifier that has been used to assign a taxonomic context to a data object. In biology, most
identifiers are scientific names, but the approach must also embrace vernacular names, and surrogates (such as
culture isolate numbers, sample or specimen numbers) that are used in place of names. In the future, auto-
mated indexing tools will analyse electronic repositories, identify the labels, and use the label to link the data
object with the taxon. The success of these tools will depend on how well they handle mis-spelled names,
obsolete names, differently abbreviated names (and authority information), names that have been distorted
through OCR (Optical Character Recognition) errors or Web algorithms (e.g. the Flickr machine tag format
(http://www.flickr.com) removes spaces between names, creating “Iguanaiguana” from Iguana iguana). Auto-
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mated name-recognition tools work through recognition of known names and/or the discovery of unknown
names (Leary et al. 2007). Their functioning is facilitated through the assembly of a pool of all known names
in all of their forms which can then serve as the basis for recognition algorithms, and for the improvements of
name-discovery rules. The need for such a structure had led to the creation of the uBio NameBank (http://
www.ubio.org), currently with over 10,000,000 names for 1,800,000 species. 

Taxonomically intelligent reconciliation

The most widespread problem in the use of names for indexing purposes is that there are many different
names and variants of names for the same species. The conventional taxonomic solution uses nomenclatural
principles to select the correct name for the taxon, to which some or all of the other code-compliant names
(synonyms) that have been applied to the same taxonomic concept can be linked. This logic lies behind the
Catalog of Life Partnership compilation (CoLP, http://www.catalogueoflife.org). However, a nomenclaturally
based solution such as this cannot form the basis of an indexing system because many names and variants of
names which are associated with data objects are not code-compliant and so will be excluded. Moreover, the
nomenclatural solution provides for the correct names at the present time, but cannot be retrospectively
applied to many older documents. A purely nomenclatural approach can not serve well the needs of other
major initiatives, such as the Biodiversity Heritage Library. An alternative solution, which is adopted here, is
to catalogue all of the name strings that have been used for an entity and group them together within a recon-
ciliation groups.  The members of each reconciliation group contain all of the names that have been used for a
given taxon.  A query starting with any of the names in a group can exploit the reconciliation group to explode
the query so that it uses all names. Reconciliation thus improves recovery of records, especially with older
data (Table 1). 

TABLE 1. Recovery of records from PubMed (http://www.ncbi.nlm.nih.gov/pubmed), JSTOR (http://www.jstor.org)
and Google (http://www.google.com) with 5 of the 15 known related names for the red spotted newt from eastern North
America.

Any names that refer to different taxa (i.e. are homonyms) can be disambiguated through the use of recon-
ciliation groups. Disambiguation requires copies of the same name string that refers to different taxa (such as
Aotus, or Peranema) to be placed in different reconciliation groups and to be annotated with a flag that alerts
users (whether people or machines) to a need for special attention.

Reconciliation groups contain names in several categories. Lexical variants are alternative spellings of the
same term. An example might be different yet code-compliant spellings of the same name: such as Gerardia
paupercula var. borealis (Pennell) Deam and Gerardia paupercula (A.Gray) Britton subsp. borealis (Pennell)
Pennell, mis-spellings (Eugelna vs. Euglena), binomials with different endings (like Pomatomus saltator and
Pomatomus saltatrix) and even abbreviations like Camp rotu (for Campanula rotundifolia) widely used in
plant ecology. All are unarguably variations of the same name and so are objectively linked. Reconciliation

Name Year of first use Items in PubMed Items in JSTOR Items in Google

Notophthalmus viridescens 1965 377 281 31,900

Diemictylus viridescens 1959   36   38   2,180

Triturus viridescens 1949   99 280 14,100

Diemyctilus viridescens 1965    1     3      105

Diemyctylus viridescens 1964    4   70   1,830
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groups include so-called “objective synonyms” that include homotypic synonyms (Pinus abies Linnaeus and
Picea abies (Linnaeus) H. Karsten), nomenclatural variants and combinations of names based on the same
type material (e.g., Pomatomus saltator, Temnodon saltator, and Gasterosteus saltatrix), as well as subjective
synonyms — names based on different types but accepted as synonyms in a particular treatment (e.g., Dacty-
lorhiza baltica and Dactylorhiza purpurella). Because of their subjective component, reconciliation groups
can be considered as a form of a taxonomic concept — a circumscription of the underlying biological mean-
ing (see Concept-capable discussed below). Reconciliation groups must also extend to vernacular names
because they too label data objects and in some environments are preferred over code-compliant names. Ver-
naculars will need to be placed within a linguistic, geo-referenced and script-based context given that the
same names are often used for different organisms and the pattern of use depends on location. Reconciliation
groups also include surrogates for names (such as culture identifiers, herbarium labels, nucleotide database
IDs, etc.).

Names and their relationships with each other within the reconciliation groups can be annotated by flags
to distinguish what kind of name the string refers to, the nature of the relationship among names, the prove-
nance of assertions (Smith believes this is a junior subjective synonym of that), or to indicate the nomenclatur-
ally correct name.

Taxonomically intelligent disambiguation

A names-based infrastructure must be capable of discriminating among the different uses of identical name
strings for different taxa. Without this, automated systems have a high risk of confounding information on
hemihomonyms — homonyms assigned to different taxa subject to different codes (Kluge 2000) like Oenan-
the (the plant) with Oenanthe (the bird). One step for this class of homonyms is to mark all such names with
code identifiers (as it is common practice in linguistics and philosophy). For homonyms falling under the
jurisdiction of the same code (such as Argus, used for spiders, molluscs, birds and various insects) other
means of disambiguation, such as providing the taxonomic context as discussed above, may be employed.
These names should have a flag that alerts users and systems to the homonym problem. Any action involving
one of these names must initiate a process of disambiguation that will lead to the association of a data object
with the correct reconciliation group. Disambiguation is essential for automatic names-finding and indexing
tools that will frequently encounter spelled-alike abbreviations (such as C. marina) that may refer to many dif-
ferent taxa. Name-recognition tools will require rule sets that can clarify the intention from the context in
which the string appears. Scientific names can also be disambiguated by reference to broader taxonomic cate-
gories (Peranema Pteridophyta is not the same as Peranema Protista), by the naming authority (Peranema
Dons vs. Peranema Dujardin), or by key words that associate with the target taxa (i.e. the co-occurrence of
terms like “frond” or “spores”, or the names of other fern genera or species would indicate that the Peranema
refers to the plant and not the protist). However, in many cases, the rules may be insufficient to disambiguate
taxa, and in such cases, the indexing must be vetted and finalized through the community of experts to ensure
that data objects are correctly classified. Vernacular names can be disambiguated by reference to scientific
names that are used in conjunction with them, or through their linguistic or geographic context.

Concept-capable

Kennedy and co-workers (2005) argue that names are imprecise flags of “taxonomic concepts”. We may use
the same name but have different opinions about what it refers to (e.g., does the name Gorilla beringei include
the individuals that others refer to as Gorilla beringei graueri or not?). Taxonomic concepts refer to the scope
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of application of the name of a taxon. This can be done through bibliographic references (“sensu Smith
1900”), references to specimens, or comparisons of different taxonomies that include or exclude other taxa.
The challenges of concept management and the supremacy of concepts over names have led some to dismiss
the value of a names-based infrastructure (Berendsohn 1995, Kennedy et al. 2005). Yet, a purely concept-
based indexing system will be ineffectual because names are predominantly applied without clear indication
of the concept to which they refer (Agnarsson & Kuntner 2007, Bortulus 2008). The best solution would be a
marriage of a names-based with a concept-based management system. Taxonomic concepts can be incorpo-
rated within a names-based infrastructure in several ways. The inclusion of subjectivism within reconciliation
groups offers one solution, multiple classifications (see below under “Hierarchical structure”) offer a second,
and placement of taxonomic concepts within a particular hierarchy offers a third.

Hierarchical structure

Classifications are important components of taxonomy because they represent hypotheses of the evolution of
taxa or indicate relatedness. Hierarchical arrangements of taxa also provide a useful structure for biological
data management (Kennedy 2003) as they may serve as ontologies defining relationships among (metadata)
elements. Classifications can be exploited to disambiguate homonyms, browse content, drill towards more
taxonomically precise groups or expand searches. They permit hierarchical aggregation of data, such that
when a search is made on “Diptera”, the settings can specify ‘find me all data objects with the word “Diptera”
associated with them’, but also ‘find me all data objects that carry the name of any fly or group of flies’. Hier-
archical searches furthermore have significant value in being able to compare phylogenetic hypotheses by
providing metrics of the consistency of data objects and their metadata with competing hypotheses. 

Neither the entire species inventory nor the tree of life have been assembled, nor will they be. As a result,
many different classifications will coexist and none of them is correct (Yoon & Rose 2001). A single, static
classification will not be able to serve the needs of all users. Therefore, our management system has to be able
to represent multiple, evolving hierarchies to reflect these different opinions about how organisms are related
(see ‘Phylogenetic’), eventually forming a graph of overlapping hierarchies (Kennedy 2003). 

Phylogenetic structure

The hypothesis that all known life is inter-related through ancestor-descendant relationships remains unfalsi-
fied. That grounds the principle that seeks to incorporate our understanding of those relationships within our
cyberinfrastructure. Closely related taxa share higher proportions of their genome, and can be expected to
share a high proportion of their attributes. This provides a logical basis for the hierarchical organization within
the system. It also allows us to infer and predict properties before they have been reported, an important fea-
ture as biology shifts towards datacentricity. The elimination and transformation of taxa that do not fully
reflect our understanding of phylogenetic relationships characterizes the evolution of taxonomy. A cyberinfra-
structure that can mimic the trend towards monophyly and holophyly will be more powerful and will gain
acceptance from its user community. As noted under ‘hierarchical’, this trend should not be accompanied by a
unitary point of view. Rather, the infrastructure can be designed to promote a process towards an architecture
unified by phylogenetic relationships, and that process can be expressed in allowing stakeholders to change
the composition and relationships of taxa. 
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Distributed organization

Information on names (whether lists of names, nomenclatural status, relationships) is located in many differ-
ent on-line sources, all with their own specific purpose, taxonomic territory and user community (Table 2).
There are many additional repositories of names and name associated information targeted on particular taxo-
nomic groups (e.g., Antbase: http://www.antbase.org; CrustaceaNet: http://www.crustacea.net; Millipeet http:/
/www.fieldmuseum.org/research_collections/zoology/zoo_sites/millipeet/), on particular habitats (such as the
OBIS, ERMS, WoRMS and APHIA initiatives that address marine taxa), names relating to particular geo-
graphic regions, or lists holding vernacular names. This decentralisation of names providers has several
advantages — it captures the enthusiasm of individuals by allowing them to identify closely with projects, it
creates stability through redundancy, richness through diversity, relevance through purpose, and spreads the
tasks among many players. A names-based infrastructure that can bring together the strengths of this distrib-
uted richness will outperform one that does not. On the other hand, information coming from different sources
is usually heterogeneous in structure and value, so federation (integration of independent operations) is not
straightforward. Creating a single point of access to this distributed information will help in organising infor-
mation about, or attached to these names. This integration process can be addressed through devices like the
Global Names Index (see Up-to-date, below) and by ensuring consistency through normalisation (see Interop-
erability, below).

Interoperability

Data flow between various names providers requires the adoption of standards, schemas and transfer proto-
cols to facilitate the machine-to-machine dialog. Various standards exist in the field of biodiversity. The
Biodiversity Information Standards group (TDWG, http://www.tdwg.org) is a key player in the development
of standards for data exchange in different fields of biodiversity and promotes the deployment of Life Science
Identifiers (LSIDs) to serve as globally unique identifiers (GUIDs) of taxonomic names. In order to capture
the information which the data providers hold, a names-based infrastructure needs to be compliant with indus-
try standards by adopting the current schemas, by serving LSIDs or other GUIDs through agreed data
exchange standards. Furthermore, a names-based architecture should promote the usage of RDF (Resource
Description Framework) formatted data and ontologies to facilitate semantic data exchange and retrieval.
Many well-established databases would not be able to convert to new standards with ease, and in these cases,
the solution will need to export and import data through “abstract layers” that transform data from one schema
or format to another.

Up-to-date

Taxonomy is an evolving discipline. New taxa are continuously being discovered, new relationships are being
described, and taxa are split, merged or renamed to reflect the most current knowledge about the evolution and
relatedness of organisms. This continuously evolving knowledge has to be reflected by a dynamic names-
based cyberinfrastructure. Excepting molecular biology, which involves the submission of published genetic
sequences to central registries, the dissemination of biocentric information is not organised centrally. The Glo-
bal Names Index, of which a prototype was established in 2008 is an emerging federated web services envi-
ronment that dynamically interconnects an array of names partners. Names partners may include authoritative
nomenclatural sources (such as ZooBank, the International Plant Index — IPNI, Index Fungorum, the Univer-
sal Virus Database — ICTVdB) or other repositories of authoritative information (such as the Catalogue of
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Life Partnership). The names partners link to a common index through Web Services that automatically keeps
the index appraised of changes in each participating database. Partners unable to provide appropriate web ser-
vices can pass simple names lists into a hosting service that informs the index on their behalf. The common
index provides a searchable and machine accessible environment that keeps all partners up to date on new
names and associated metadata. 

TABLE 2. A selection of on-line resources providing names information.

Project name URL Description

AlgaeBase http://www.algaebase.org Names of terrestrial, freshwater and 
marine algae

Deutsche Sammlung von Mik-
roorganismen und Zellkul-
turen (DSMZ)

http://www.dsmz.de/microorganisms/
bacterial_nomenclature.php

Lists of names of eubacteria and archae-
bacteria that are compliant with the Inter-
national Code of Nomenclature of 
Prokaryotes

Index Algarum http://ucjeps.berkeley.edu/INA.html Names of terrestrial, freshwater and 
marine algae

Index Fungorum http://www.indexfungorum.org Index of all code-compliant fungus names

Index Nominum Genericorum http://www.botany.si.edu/ing Compilation of generic names for organ-
isms covered by the International Code of 
Botanical Nomenclature

Integrative Taxonomic Infor-
mation System (ITIS)

http://www.itis.gov Taxonomic information on plants, ani-
mals, fungi, and microbes, mostly of 
North America 

International Plant Names 
Index (IPNI)

http://www.ipni.org Names of genera and species of seed-
bearing plants with their place of publica-
tion

List of Prokaryotic Names with 
Standing in Nomenclature

http://www.bacterio.cict.fr/allnames.html Lists of names of eubacteria and archae-
bacteria that are compliant with the Inter-
national Code of Nomenclature of 
Prokaryotes

micro*scope http://microscope.mbl.edu Information on the biodiversity of 
microbes

Nomenclator Zoologicus http://uio.mbl.edu/NomenclatorZoologicus Compilation of genera and subgenera in 
zoology from 1758 to 2004

The Catalogue of Life Partner-
ship (CoLP)

http://www.catalogueoflife.org An incomplete catalogue of all known 
species of organisms on Earth

uBio http://www.ubio.org Assembles all name strings ever used for 
organisms in literature and Internet, 
mainly for indexing purposes

Universal Virus Database 
(ICTVdb)

http://www.ictvdb.rothamsted.ac.uk Approved virus names, linked to virus 
descriptions

World Register of Marine Spe-
cies (WoRMS)

http://www.marinespecies.org Comprehensive list of names of marine 
organisms, including information on syn-
onyms

ZooBank http://www.zoobank.org Intended as the official registry of Zoo-
logical Nomenclature
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Participation

The assembly and maintenance of a names-based infrastructure requires schemas, rules and algorithms to
automate processes. Yet biology is not a “units and rules” science within which the totality can be derived
from a sum of all of the parts, nor is it as ‘rectangular’ as informaticians might like it to be (where ‘rectangu-
lar’ refers to data in columns and rows). Biology has an inherent narrative component, and the elements of our
understanding, whether the taxonomic perspectives, or the -ologies that transect the discipline, lack the atomic
character of many other sciences, and so require an interpretative approach. The historical assembly of the sci-
ence has often been by form of a social narrative in which personas have played a significant role in determin-
ing what is ‘true’. An infrastructure for biology will not be one based on a few simple principles. Rather, it
must handle data objects deriving from a complex, layered, inconsistent and sometimes unpredictable system.
With tens of millions of names to manage, the nuancing of the system can only be achieved through active
community involvement. Taxonomic experts who are willing to act as custodians for a clade will shoulder the
responsibility of keeping the information up to date and of refining the crude algorithm-based approach to suit
the nature of the discipline.

At another level, we can promote the evolution of the infrastructure so that it grows to become more
appropriate to the task. By placing the concepts, algorithms, and tools into a communal open-source environ-
ment and by opening up content through APIs (Application Programming Interfaces) and other web services,
we create the foundation for an evolutionary process to come into play and facilitate the emergence of cyber-
taxonomy as a cornerstone of the discipline. Furthermore, to encourage participation, an attribution system
should be provided for all types of contribution to the system (e.g., provision of data, taxonomic editing of
clades). 

Authoritative

Despite the shapelessness of much of biology, there are better practices and poorer practices. Nomenclatorial
aspects of taxonomic practices are usually regulated by the International Codes of Nomenclature following a
framework of rules and recommendations that provide a certain level of structure and reliability to the subject.
Nevertheless, the accumulation of data from heterogeneous sources will reveal errors and inconsistencies or
even introduce new problems (e.g., algorithmically created errors, OCR errors, unicode conversion errors or
erroneous “names” introduced by automated name-recognition tools).

Especially because of the peculiarities and widespread relevance of biology, and because of the depen-
dence of a names-based architecture on taxonomy, it will be critical that devices are in place to facilitate con-
tinuing improvements in quality (accuracy, precision and completeness of the data environment). These will
allow the system to evolve towards authority. Devices to support automatic quality control and quality assur-
ance should be implemented, such as simple consistency checks, algorithms implementing nomenclatural
rules, loops that return information from users to providers with the intent of improving fitness for purpose,
clear indication of the quality status of a name (e.g., “vetted by expert”, “coming from an authoritative
source”, “unverified status”), as well as devices that allow the hypotheses (such as the hypothesis ‘Chrom-
ista’) to be tested for consistency against bodies of all indexed data). Transparency and documentation of all
elements will help the system to grow into a trustful source of information. No algorithm will ever be able to
capture all deviations from general trends such that a system that combines algorithmic solutions to the chal-
lenges of scale, integration with clade custodianship by experts, together with devices to allow co-existence of
multiple points of view, will more likely achieve the authority that we seek. 
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Scalable

One of the crucial requirements for the success of a names-based cyberinfrastructure is scalability. In the near
future, the online availability of information and the increasing interconnection of data sources will result in
rapidly growing numbers of names, relationships between them and data objects attached to them. As an
example, new technologies of pyrosequencing have the capacity to generate millions of records of the diver-
sity and abundance of species within ecosystems (Sogin et al. 2006)—within a matter of hours. The evolution
of molecular technologies will result in growing accumulations of full genomes and community metage-
nomes. The Global Biodiversity Information Facility (GBIF, http://www.gbif.org) is currently setting itself the

goal of indexing over a billion specimen records. Conservatively, we need to plan for 1012 data objects. The
architecture of the underlying infrastructure must work with extremely large amounts of data, provide effec-
tive indexing and management of names, be stable, and permit effective discover and fast retrieval of date.

Conclusions

The EOL informatics group assisted by the PROPE-taxon initiative of the EU Network of Excellence Mar-
BEF (Marine Biodiversity and Ecosystem Functioning, http://www.marbef.org) has been promoting the
development of a names-based infrastructure with the properties described above. The components that are in
place include repositories of names such as uBio's NameBank, sources of authoritative information — from
the nomenclators to the aggregators, the adoption of standards (TDWG) and the emergence of a dynamic net-
working of names providers (GNI). The release of the Encyclopedia of Life in February 2008 exploited a pro-
totype of this environment, proved that this approach is feasible and that it will contribute to a comprehensive
and authoritative management of biological information at large. We are now in the process of building a sys-
tem with the properties identified here.
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