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1 Questions and answers
Previous final question

2 Multivariate statistics, or Data Mining
Generic methods
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Starting...

> setwd("<working folder>")
or

“Change dir”
in menu!
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Questions and answers Previous final question

Previous final question: the answer

Why do biologists use multivariate methods?

To see the structure
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Multivariate statistics, or Data Mining Generic methods
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Multivariate statistics, or Data Mining Generic methods

Matrix graph: correction

> pairs(iris[1:4], pch=21, bg=(1:3)[iris$Species])
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Multivariate statistics, or Data Mining Generic methods

Parallel coordinates plot

> eq8 <- read.table("http://ashipunov.info/data/eq8.txt",
+ h=T)
> library(MASS)
> parcoord(eq8[,-1], col=rep(rainbow(8), table(eq8[,1])))
> legend("top", names(table(eq8[,1])), fill=rainbow(8),
+ ncol=4)

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 8 / 45



Multivariate statistics, or Data Mining Principal Component Analysis (PCA)
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Multivariate statistics, or Data Mining Principal Component Analysis (PCA)

Principal Component Analysis

Principal Component Analysis tries to achieve the best projection
of multivariate cloud, taking into account as many characters
(dimensions) as possible
All characters are transformed into components; first component
is the most important, second and third are also significant
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Multivariate statistics, or Data Mining Principal Component Analysis (PCA)

PCA for iris data

> iris.pca <- princomp(scale(iris[,1:4]))
> plot(iris.pca, main="") # this is technical screeplot
> iris.p <- predict(iris.pca)
> plot(iris.p[,1:2], type="n", xlab="PC1", ylab="PC2")
> text(iris.p[,1:2], labels=abbreviate(iris[,5], 1,
+ method="both"))
> loadings(iris.pca)
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Multivariate statistics, or Data Mining Principal Component Analysis (PCA)

Inferential PCA (library ade4)

> library(ade4)
> iris.d <- dudi.pca(iris[,1:4], scannf=FALSE)
> s.class(iris.d$li, iris[,5])
> randtest(bca(iris.d, iris[,5], scannf=FALSE))
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Multivariate statistics, or Data Mining Correspondence analysis
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Multivariate statistics, or Data Mining Correspondence analysis

Correspondence analysis

You may think about PCA as a multivariate derivative of
correlation analysis, and correspondence analysis may be
imagined as a derivative of contingency tables analysis
Unique feature of correspondence analysis is an ability to show
both rows and columns on one graph
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Multivariate statistics, or Data Mining Correspondence analysis

Simple example of correspondence visualization

> library(MASS)
> caith
> biplot(corresp(caith, nf=2))

caith is the embedded data on the cross-classification of people in
Caithness, Scotland, by eye and hair colour

Library vegan contains more advanced methods and graphs,
represented in particular by functions cca() and decorana()
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Multivariate statistics, or Data Mining Similarity

Multivariate statistics, or Data
Mining
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Multivariate statistics, or Data Mining Similarity

Distance and similarity

Distance is simple a numerical measure of similarity
Euclidean distance is (1) hypothenuse; manhattan distance (2) is
a sum of legs
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Multivariate statistics, or Data Mining Similarity

Closeness and distance

> ma <- data.frame(V1=c(7,3,5), V2=c(7,5,3))
> row.names(ma) <- c("A","B","C")
> dist(ma) # Euclidean is default
> dist(ma, method="manhattan")
> iris.d <- dist(iris[,1:4])
> library(cluster)
> iris.dist <- daisy(iris[,1:4], metric="manhattan")

daisy() function is more universal since it can work with both binary
and measurement variables.

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 18 / 45



Multivariate statistics, or Data Mining Multi-dimensional scaling

Multivariate statistics, or Data
Mining

Multi-dimensional scaling

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 19 / 45



Multivariate statistics, or Data Mining Multi-dimensional scaling

Multi-dimensional scaling

Multi-dimensional scaling may be seen as making a geographic
map from all pairs of distances
Results are often similar to PCA but axes are not connected with
any particular character
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Multivariate statistics, or Data Mining Multi-dimensional scaling

Scaling examples

> example(cmdscale)
> eurodist
> iris.c <- cmdscale(iris.dist)
> plot(iris.c[,1:2], type="n", xlab="Dim. 1",
+ ylab="Dim. 2")
> text(iris.c[,1:2], labels=abbreviate(iris[,5], 1,
+ method="both.sides"))
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Multivariate statistics, or Data Mining Cluster analysis

Multivariate statistics, or Data
Mining

Cluster analysis

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 22 / 45



Multivariate statistics, or Data Mining Cluster analysis

Cluster analysis

Clusterization is the making groups
Hierarchical clusterization makes trees (dendrograms)
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Multivariate statistics, or Data Mining Cluster analysis

Hierarchical clustering

> plot(hclust(dist(ma)))
# We will choose every fifth row
> iriss <- iris[seq(1,nrow(iris), 5),]
> iriss.dist <- daisy(iriss[, 1:4])
> iriss.h <- hclust(iriss.dist, method="ward")
> plot(iriss.h, labels=abbreviate(iriss[,5], 1,
+ method="both.sides"))
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Multivariate statistics, or Data Mining Cluster analysis

Support for branches

> library(pvclust)
> irisst <- t(iriss[, 1:4])
> colnames(irisst) <- paste(abbreviate(iriss[,5], 3),
+ colnames(irisst))
> iriss.pv <- pvclust(irisst, method.dist="manhattan",
+ method.hclust="ward", nboot=100)
> plot(iriss.pv, col.pv=c(1, 0, 0))
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Multivariate statistics, or Data Mining Cluster analysis

Another hierarchical clustering example (very simple)

> fences <- read.table(
+ "http://ashipunov.info/data/fences.txt", h=T)
> library(cluster)
> str(fences)
> fences.d <- daisy(fences)
> summary(fences.d)
> plot(hclust(fences.d))
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Multivariate statistics, or Data Mining Cluster analysis

Fuzzy clustering

> iris.f <- fanny(iris[,1:4], 3)
> plot(iris.f, which=1, main="")
> head(data.frame(sp=iris[,5], iris.f$membership))
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Multivariate statistics, or Data Mining Classification (machine learning)
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Multivariate statistics, or Data Mining Classification (machine learning)

Classification (machine learning)

Machine learning, or classification is alway based on the example
where objects already distributed into groups
These methods are trying to find a best classification algorithm
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Multivariate statistics, or Data Mining Linear Discriminant Analysis (LDA)
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Multivariate statistics, or Data Mining Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Linear discriminant analysis is based on the idea that
classification could be made on a bases of linear equations
This is a parametric method
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Multivariate statistics, or Data Mining Linear Discriminant Analysis (LDA)

LDA example

> library(MASS)
> iris.train <- iris[seq(1,nrow(iris),5),]
> iris.unknown <- iris[-seq(1,nrow(iris),5),]
> iris.lda <- lda(Species ~ . , data=iris.train)
> iris.ldap <- predict(iris.lda, iris.unknown[,1:4])$class
> table(iris.ldap, iris.unknown[,5])
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Multivariate statistics, or Data Mining Linear Discriminant Analysis (LDA)

LDA testing

> ldam <- manova(as.matrix(iris.unknown[,1:4]) ~
+ iris.ldap)
> summary(ldam, test="Wilks")

“Wilks” value is not only a statistic, it is also a likelihood ratio: for better
classifications, Wilks is closer to 0
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Multivariate statistics, or Data Mining Linear Discriminant Analysis (LDA)

LDA visualization

> iris.lda2 <- lda(scale(iris[,1:4]), iris[,5])
> iris.ldap2 <- predict(iris.lda2, dimen=2)$x
> plot(iris.ldap2, type="n", xlab="LD1", ylab="LD2")
> text(iris.ldap2, labels=abbreviate(iris[,5], 1,
+ method="both.sides"))
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Multivariate statistics, or Data Mining Regression trees (recursive partitioning)
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Multivariate statistics, or Data Mining Regression trees (recursive partitioning)

Regression trees (recursive partitioning)

Regression trees, or recursive partitioning are based on the same
idea as biological descriptive keys
On each step, methods searches for the best separation between
members of group

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 36 / 45



Multivariate statistics, or Data Mining Regression trees (recursive partitioning)

Regression tree example I

> library(tree)
> iris.tree <- tree(Species ~ ., data=iris)
> plot(iris.tree); text(iris.tree)
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Multivariate statistics, or Data Mining Regression trees (recursive partitioning)

Regression tree example II

> eq <- read.table("http://ashipunov.info/data/eq.txt", h=TRUE)
> eq.tree <- tree(SPECIES ~ ., data=eq)
> plot(eq.tree); text(eq.tree)
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Multivariate statistics, or Data Mining Advanced methods of classification
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Multivariate statistics, or Data Mining Advanced methods of classification

Advanced methods of classification

“Random Forest” is based on the construction of multiple
regression trees
“Support Vector Machines” try to find a hyperplane which
separates objects best

Shipunov (MSU) Biometry. Lecture 24 May 7, 2014 40 / 45



Multivariate statistics, or Data Mining Advanced methods of classification

Random Forest example

> library(randomForest)
> set.seed(17)
> iris.rf <- randomForest(Species ~ ., data=iris.train)
> iris.rfp <- predict(iris.rf, iris.unknown[,1:4])
> table(iris.rfp, iris.unknown[,5])
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Multivariate statistics, or Data Mining Advanced methods of classification

Random Forest visualization

> set.seed(17)
> iris.urf <- randomForest(iris[,1:4])
> MDSplot(iris.urf, iris[,5])
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Multivariate statistics, or Data Mining Advanced methods of classification

SVM example

> library(e1071)
> iris.svm <- svm(Species ~ ., data=iris.train)
> iris.svmp <- predict(iris.svm, iris.unknown[,1:4])
> table(iris.svmp, iris.unknown[,5])
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Multivariate statistics, or Data Mining Advanced methods of classification

Finishing...

> savehistory("20140507.r")
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Multivariate statistics, or Data Mining Advanced methods of classification

Short anonymous absolutely voluntary survey

1 What do you like most in biometrics course?
2 What do you dislike most in biometrics course?
3 Which lab do you remember most of all?
4 Please grade (1—bad, 5—excellent):

1 Lectures
2 Labs
3 Final questions
4 Exams

5 Please recommend something for the Spring 2015 Biometrics.
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