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1 Introduction

This book is written for those who want to learn to analyze data. This challenge arises frequently when
you need to determine a previously unknown fact. For example: does this new medicine have an effect on a
patient’s symptoms? Or: Is there a difference between the public’s rating of two politicians? Or: how will
the value of the dollar change in the next week?

You might think that you can find the answer to such a question simply by looking at the numbers.
Unfortunately this is often not the case. For example, after surveying 262 people exiting a polling site, it
was found that 52% voted for candidate A and 48% for candidate B. Do the results of this exit poll tell you
that candidate A won the election? Thinking about it, many would say “yes,” and then, considering it for a
moment, “Well, T don’t know, maybe?” But there is a simple (from the point of view of modern computer
programs) “proportion test” that tells you not only the answer (in this case, “No, the results of the exit poll
do not indicate that Candidate A won the election”) but also allows you to calculate how many people you
would need to survey to be able to answer that question. In this case, the answer would be “about 5000
people’—see the explanation at the end of the chapter about one-dimensional data.

Not knowing how to use methods of statistical analysis can lead to mistakes and misinterpretations.
Unfortunately, understanding of these methods is far from common. Many college majors require a course
in probability theory and mathematical statistics, but all many of us remember from these courses is horror
and/or frustration at complex mathematical formulae filled with Greek letters, some of them wearing hats.
But probability theory forms the basis of most data analysis methods. On the other hand, it’s not always
necessary to understand the physics of radio waves to enjoy listening to the radio. For the practical purposes of
analyzing data, you don’t have to be fully fluent in mathematical statistics and probability theory. Textbooks
with titles like “Statistics Without Tears: An Introduction for Non-Mathematicians” abound.

Some caution is required, though, on the part of both authors and readers of such books: many methods
of statistical analysis have, so to speak, a false bottom. You can apply these methods without delving too



deeply into the underlying principles, get results, and discuss these results in your report. But you might
find one day that a given method was totally unsuitable for the data you had, and therefore your conclusions
are invalid. You must be careful and aware of the limitations of any method you try to use and determine
whether they are applicable to your situation.

On examples: We have tried to use as many examples as possible, both simple and complex, from a
number of fields. We also tried to reduce the amount of theoretical material because we know that many
people find concrete examples to be most useful for learning. Because this book is based on a script-based
computer program |?]|, we have made many of the scripts used here publicly available to download at [address].
This site also contains any data files that are not included in the R software, and additional useful links.

How this book is structured: The first chapter is almost entirely theoretical. If you don’t feel like reading
these discussions, you can skip to Chapter 2. But the first chapter contains information that will help you
avoid many common pitfalls. In Chapter 2, the most important sections are those beginning with “How
to download and install R,” which explain how to work with R. Mastering the material in these sections
is crucial to get anything out of subsequent ones. We recommend carefully reading and working through
all the problems in this section. Subsequent chapters make up the core of the book, explaining the most
widely used methods of data analysis. The chapter titled “Statistical Investigation,” which talks about
the general organization [?] of statistical analysis, concludes the book by discussing again the methods
introduced in previous chapters. The appendices contain useful information about graphical interfaces in
R, delineate a simple example of a project in R, describe the basics of programming in R, and excerpt the
official documentation. Every appendix is a small handbook that can be used more or less independently
from the rest of the book.

Of course, many statistical methods, including quite important ones, are not discussed in this book.
We almost completely neglect statistical modeling, don’t discuss contrasts, don’t examine many standard
distributions besides the normal, effect tests, survival curves, Bayesian methods, factor analysis, geostatistics,
we don’t talk about how to do multifactorial or block dispersion analysis, design experiments, and much else.
Our goal is to teach fundamentals of statistical analysis. Having mastered the basics, more advanced methods
can be grasped without much difficulty with the help of the scholarly literature, internal documentation, and
online resources.

A few technical notes: many example problems in this book can and should be reproduced independently.
These examples are written in typewriter font and begin with the > symbol. If an example doesn’t fit
on one line, a + sign indicates the line’s continuation—do not type the + sign when reproducing the code.
When a reference is made to loading data, it’s assumed that the necessary files are stored at the subdirectory
“data” of the active directory. If you are downloading data from the above site, don’t forget to create this
directory and copy the data there.

2 How to evaluate the overall trend

In any sample, there are two most common characteristics: center (central tendency) and spread (pp). As the
center of the most commonly used mean and median, and as a scatter—standard deviation and quartile. mean
the arithmetic average of the median differs primarily in that it works well mostly when the data distribution
is close to normal (we ’ll talk more about this later). Median not so dependent on the characteristics of the
distribution is said to statistics, it is a robust robustness (stable). understand the difference is easiest in this
sample. Consider again our hypothetical employees. Here is their salary (in thous.)

> salary <- ¢ (21, 19, 27, 11, 102, 25, 21)

The difference in salaries is due, in particular, the fact that Sasha—forwarder and Kate—head of the
firm.

> mean (salary); median (salary)
[1] 32.28571
[1] 21

It turns out that due to the high average salary Katina worse reflects typical “ 7, central salary than the
median. Why does it happen ? The fact that the median is calculated quite differently than the average.
—The median is the value that cuts off half of the ordered sample. To better see this, go back to the two
vectors on which example in the previous chapter showed how grades are assigned:
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>al <- ¢ (1,2,3,4,4,
> a2 <- ¢ (1,2,3,4,

> median (al)

[1] 6

> median (a2)

[11 7

H

In the vector al only twelve values, that is an even number. In this case, the median—the average
between the two central figures. Vector Y a2, everything is easier, there eleven values, so the median is
taken just mean.

Also median sample to evaluate the properties are very useful quartile, that is, those values that cut
accordingly 0%, 25%, 50%, 75% and 100% of the total distribution data. If you read the previous paragraph
carefully, you might have realized that the median—it’s just the third quartile (50%). The first and fifth
quartile—are respectively a minimum and a maximum, and the second and fourth quartiles used to compute
robust dispersion (see below). Concept can quartile 7 expand and introduce a special term for the value of
the clipping any interest ordered distribution (not necessarily Quarters)—this is called “ quantile ”. Quantiles
are used, for example, when analyzing the data for normality (see below).

To characterize the spread is often used and parametric value—standard deviation. Widely known
three sigma rule, which states that if the means of two samples differ by more than triple the standard
deviation, then the samples are different, that is taken from various general populations. This rule is very
convenient, but, unfortunately, means that both samples must obey the normal distribution. To calculate
the standard deviation in R provides the function sd ().

But average and median, there is one central distributions, the so-called mod fashion, the most frequently
occurring value in the sample. Fashion is rarely used and mostly for nominal data. Here’s how to calculate
it in R (we used to calculate the variable sex from the previous chapter):

“wo»

> sex <- ¢ ("male", "female", "male", "male", "female", "male",
+ "Male")

> t.sex <- table (sex)

> mode <- t.sex [which.max (t.sex)]

> mode

male

5

Thus, our sample fashion—male.
Often the task is to count the mean the arithmetic mean (or median) for the entire data table. There
are several techniques to facilitate the life. Show them the example of embedded data trees:

> attach (trees) # The first method

> mean (Girth)

[1] 13.24839

> mean (Height)

(1] 76

> mean (Volume / Height)

[1] 0.3890012

> detach (trees)

> with (trees, mean (Volume / Height)) # The second method
[1] 0.3890012

> lapply (trees, mean) # The third way
$ Girth

[1] 13.24839

$ Height

[1] 76

$ Volume

[1] 30.17097



The first method (using the attach ()) allows you to connect to the database table column list of current
variables. After that variables can be referenced by name without mentioning the name of the table. It is
important not to forget to do at the end of detach (), because the great danger of confused that you have
attached, and that—mno. If variables were connected somehow modified on the table itself is not affected.

The second method, in fact, similar to the first, attachment occurs only within parentheses function with
(). The third method uses the fact that the data table is—lists of speakers. For strings, this technique does
not work, it will be necessary run apply (). (If you came up with the fourth method, then recall that the
cyclic structure of type for in R without the need not welcome).

standard deviation standard deviation, dispersion (its square) and the so-called interquartile variation
caused similar average:

> sd (salary); var (salary); IQR (salary)
[1] 31.15934

[1] 970.9048

[1] 6

The last expression, the distance between the second and fourth quartiles IQR (interquartile or scatter),
robustness and better suited for example, with a salary than the standard deviation.
We apply these functions to embedded data trees:

> attach (trees)
> mean (Height)
[1] 76

> median (Height)
[1] 76

> sd (Height)

[1] 6.371813

> iQR (Height)
[1] 8

> detach (trees)

It is evident that these characteristics trees much closer to each other. Reasonable to assume that the
distribution of tree height is close to normal. We’ll check it below.

In our data on wages—only 7 digits. And how do you know whether there are any outstanding
figures, such as Katina salaries in large data, “ ” thousandth the size ? For this is the graphics functions.
The simplest—the so-called “ box - with - mustache ” or boksplot. First, add to our data a thousand
hypothetical workers with wages randomly taken from the interquartile spread of source data (Fig. (1)

W

> new.1000 <- sample ((median (salary) - IQR (salary)):
+ (Median (salary) + IQR (salary)), 1000, replace = TRUE)
> salary2 <- c¢ (salary, new.1000)

> boxplot (salary2, log = "y")

This is an interesting example of another because it is the first presented technique to generate random
values. function sample () able to select data from a random sample. In this case, we used replace = TRUE,
because we had a lot of numbers to choose from a much smaller sample. If you write on R imitation card
games (and such programs are written !), You must use replace = FALSE, because of the deck can not get
back the same card. Incidentally, the fact that the random values, it follows that the results of subsequent
calculations may differ if they play again, so your schedule may look slightly different.

But back to boxplot. As can be seen, Katina salary represented high points (so high that we even had
to enter the option log = "y", to the underlying point become more visible). The box itself, that is the
main rectangle bounded above and below quartile quartile, so that the height of the rectangle—it IQR. The
so-called “ ” mustache default represent points on the remote half IQR. The middle line of the rectangle—it
is easy to guess, median median. Points lying outside “ ” whiskers are considered as outliers and therefore are
drawn separately. Boksploty been specially devised renowned statistician John Tukey, in order to quickly,
efficiently and consistently reflect the basic characteristics of the sample robust. R can draw several boxplots
immediately (ie, the command vectorized see the result in Fig.
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Figure 1: Boxplot

> boxplot (trees)

There are two functions that are associated with boksplotami. The function quantile () by default
gives all five quartile quartile, and the function fivenum ()—the main characteristics of the distribution by
Tukey.

Another way the graphic is— histogram histogram, ie the line of columns whose height corresponds to
the occurrence of data that fall within a certain range (Fig. [3)

> hist (salary2, breaks = 20, main = "")

In our case, hist () default variable splits into 10 intervals, but their number can be configured manually,
as in the present example. Numerical analog of the histogram is the function cut (). With this function,
you can find out what type of data as we have:

> table (cut (salary2, 20))

(10.9,15.5] (15.5,20] (20,24.6] (24.6,29.1] (29.1,33.7]
76391295244 0

(33.7,38.3]
0

(38.3,42.8] (42.8,47.4] (47.4,51.9] (51.9,56.5] (56.5,61.1]
00000
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Figure 2: Three boksplota, each represents one column of the data table
(61.1,65.6]
0
(65.6,70.2] (70.2,74.7] (74.7,79.3] (79.3,83.9] (83.9,88.4]
0000O
(88.4,93] (93,97.5] (97.5,102]
010

There are two graphics functions close to the histogram. One is stem():

> stem (salary, scale = 2)
The decimal point is 1 digit (s) to the right of the |

11 19
2 | 1157
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 | 2
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Figure 3: Histogram hypothetical staff salaries in 1007

It is very simple—data values are represented not dots, and numbers corresponding to these values
themselves. Thus, it is seen that in the range of from 10 to 20, there are two pay (11 and 19) in the range
of from 20 to 30 four—, and so etc.

Another feature too close to the histogram, but requires much more sophisticated calculations. This
graph density distribution (Fig. |4))

> plot (density (salary2, adjust = 2), main = "")
> rug (salary2)

(We used “ 7 adds a graphics function rug (), to highlight the places with the highest density values.)

In fact, we have histogram smoothing—attempt to turn it into a continuous smooth function. How smooth
it will be depends on the parameter adjust (by default, it is equal to unity). Result of smoothing is also
called distribution schedule.

Also boksplotov and various family schedules “ 7 histograms in R and many other one-dimensional graphs.
Graph “ 7 hive such reflects not only the density of a sample distribution of values, but also how these values
are themselves located (dot). To plot the hive need to download (and possibly also install first) package
beeswarm. After that we can look at myself “ ” hive (Fig. [5)

> library ("beeswarm")
> beeswarm (trees)
> boxplot (trees, add = TRUE)
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Figure 4: Density distribution of salaries of employees in 1007 hypothetical

We are not here simply plotted hive, but also added there boksplot to expose the quartile quartile and
median median. For this we need an argument add = TRUE.
And finally, the most important function, summary ():

> lapply (list (salary, salary2), summary)
([ 1]1]

Min. 1st Qu. Median Mean 3rd Qu.

11.00 20.00 21.00 32.29 26.00

Max.
102.00

[[2]1]
Min. 1st Qu. Median Mean 3rd Qu.
11.00 18.00 21.00 21.09 24.00
Max.

102.00

In fact, it returns the same data as the fivenum () with the addition of the mean value (Mean). Note,
incidentally, that both wages “ ” median median identical, while the average differ greatly. This is another
example of instability mean values—because with the addition of randomly combined salaries “ ” form of the
distribution should not have changed significantly.
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Figure 5: Graph - hive superimposed boksplotami for three characteristics of trees

function summary ()—general, and the laws of object # -oriented approach, it returns different values
for different types of objects. You have just seen, it works for numeric vectors. For lists, it works a little
differently. The output can be, for example, so (for example, embedded data attenu about 23 earthquakes
in California):

> summary (attenu)

event mag station dist
Min.: 1.00 Min.: 5.000 117: 5 Min.: 0.50
1st Qu.: 9.00 1st Qu.: 5.300 1028: 4 1st Qu.: 11.32
Median: 18.00 Median: 6.100 113: 4 Median: 23.40
Mean: 14.74 Mean: 6.084 112: 3 Mean: 45.60
3rd Qu.: 20.00 3rd Qu.: 6.600 135 3 3rd Qu.: 47.55
Max.: 23.00 Max.: 7.700 (Other): 147 Max. 370.00
NA’s: 16
accel
Min.: 0.00300
1st Qu.: 0.04425
Median: 0.11300
Mean: 0.15422
3rd Qu.: 0.21925



Max.: 0.81000

Variable station (station number of observations)— factor, and besides missing data, therefore appears
otherwise.

Before you finish the story about the main characteristics of the sample, it is necessary to mention
another characteristic variation. To compare the variability of traits (especially those that are measured in
different units) are often used dimensionless quantity— coefficient of variation. This is simply the ratio of
the standard deviation to the mean, taken as a percentage. That’s how you can compare the coefficient of
variation for different attributes of trees (embedded data trees):

> 100 * sapply (trees, sd) / colMeans (trees)
Girth Height Volume
23.686948 54.482331 8.383964

Here we have applied for speed sapply ()—option lapply () with simplified output and colMeans (),
which simply calculates the average for each column. Just note that functions like colMeans (), in R few.
For example, a very widely used function colSums () and rowSums (), which give the totals, respectively,
in rows and columns (the main function of a spreadsheet !). There are, of course, more and rowMeans ().

3 Bad Data

Ability to function summary () to indicate missing data, the highs and lows is very good help at an early
stage of data analysis—quality control. Suppose we have data typed correctly, and they are located in the
directory data in the current directory:

> dir ("data")
[1] "errors.txt"...

> err <- read.table ("data / errors.txt", h = TRUE, sep = "\t")

> str (err)

’data.frame’: 7 obs. of three variables:

$ AGE: Factor w / 6 levels " 12", " 22" " 23" .. 343516 2
$ NAME: Factor w / 6 levels "", "John", "Kate",..: 2 31456 2

$ HEIGHT: num 172 163 161 16.1 132 155 183
> summary (err)
AGE NAME HEIGHT

12:1: 1 Min.: 16.1

22:1 John: 2 1st Qu.: 143.5
23:2 Kate: 1 Median: 161.0
24:1 Lucy: 1 Mean: 140.3
56:1 Penny: 1 3rd Qu.: 167.5
a: 1 Sasha: 1 Max. 183.0

Processing begins with the availability of the desired file. Besides command summary (), here used as a
very useful command str (). As can be seen, the variable AGE (age) somehow became a factor, and summary
() shows why: in one of the cells has crept letter a. In addition, one of the names is empty, likely because
cell forgotten put NA. Finally, the minimum height 16.1 cm— ! This does not happen even in newborns
usually, so that we can confidently assert that the typesetter just accidentally put a point.

4 Univariate statistical tests

Finished deal with descriptive statistics, we turn to a simple statistical tests (more tests in the next chapter).
Let’s start with the so-called one-dimensional ” “ that allow you to check assertions about how distributed
source data.

Suppose we know that the average salary in our first example—about 32 thousand rubles. Let us now
check how reliable this figure:

10



> t.test (salary, mu = mean (salary))
One Sample t-test
data: salary
t =0, df = 6, p-value =1
alternative hypothesis: true mean is not equal to 32.28571
95 percent confidence interval:
61.103302 3.468127
sample estimates:
mean of x
32.28571

This version of the Student test for one-dimensional data. Statistical tests (including this), the so-called
attempt to calculate test statistic, in this case, the statistics Student (t- statistics). Then, based on this
statistic is calculated “ p-value ” (p-value), reflecting the probability of type I error. A error of the first kind
(also called false alarm “ ), in turn, is a situation where we take the so-called alternative hypothesis, while
the really holds zero (by hypothesis “ default ”). Finally, the calculated p-value is used for comparison with
a predetermined threshold (level) significance. If the p-value is below the threshold, the null hypothesis is
rejected if the above—adopted. More information about the statistical hypotheses can be found in the next
chapter.

In our case, the null hypothesis is that the true mean (ie the mean of the total population) than the
calculated average world (ie 32.28571).

We proceed to analyze the function output. Statistics Student with six degrees of freedom (df = 6, since
we only 7 values) gives a single p-value, that is 100%. Whatever common threshold we have not taken (0.1%
1% or 5%), this value is still more. Therefore, we accept the null hypothesis.

As an alternative hypothesis in this case—is that now ” ¢ average (initial sample) is not equal to the
calculated average, it turns out that in fact “ ” these numbers are not statistically different. Besides all this,
and still function gives CI (confidence interval), which, in her opinion “ ”, may be present in between. Here
he greatly—from three and a half thousand to 61 thousand rubles.

Nonparametric (ie not associated assumptions about the distribution) analogue of this test also exists.
This is called the Wilcoxon rank test:

> wilcox.test (salary2, mu = median (salary2), conf.int = TRUE)
Wilcoxon signed rank test with continuity correction
data: salary?2
V = 221949, p-value = 0.8321

alternative hypothesis: true location is not equal to 21

95 percent confidence interval:

20.99999 21.00007

sample estimates:

(pseudo) median

21.00004

This function displays almost the same as the t.test () above. Note, however, note that this test is not
associated with a moderate, but with median median. Calculated (if you specify conf.int = TRUE) and
confidence interval. Here it is much narrower because the median is much more stable than the average.

Understand whether the normal distribution of the data (or at least close to normal if it is), it is very,
very important. For example, parametric statistical methods are all based on the assumption that the data
are normally distributed. Therefore, in R implements several different techniques to answer questions about
the normality of data. Firstly, this statistical tests. The easiest of them— Shapiro- Wilks (try to test it
yourself):

> shapiro.test (salary)
> shapiro.test (salary2)

But what it shows ? This function displays much smaller than in previous cases. Moreover, even the
built-in help does not contain an explanation of what is, for example, an alternative hypothesis. Of course,
you can refer to the literature, the benefit of help provides references to publications. And you can just set
up an experiment:
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> set.seed (1638)
> shapiro.test (rnorm (100))

Shapiro-Wilk normality test

data: rnorm (100)
W = 0.9934, p-value = 0.9094

rnorm () generates as many random numbers normally distributed, as indicated in his argument. This is
analogous to the function sample (). Once we got a high p-value, it indicates that the alternative hypothesis
in this case: “ distribution does not correspond to the normal ”. In addition to the results of the secondary
playing were the same as those used by the function set.seed (), regulating built- in R random number
generator random number generator so that the numbers in the following command were created by one and
the same law “ 7.

Thus, the distribution of data in salary and salary?2 different from normal.

Another popular way to check whether the distribution is similar to normal—graphic. Here’s how (Fig.

)

> qgnorm (salary2, main = "")
> qqline (salary2, col = 2)

100
I

80

40

20

Figure 6: Graphic checking normality
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For each element is calculated, what place it occupies in the sorted data (the so-called ¢ ”) and what
place he would take if the normal distribution quantile is conducted through Direct quartile quartile. If the
points are on the line, the distribution is normal. In our case, many points are far enough away from the red
line, so it does not look like normal distributed.

To test the normality can be used more versatile Kolmogorov—Smirnov, who compares any two distri-
butions, so for comparison with the normal distribution it is necessary to explicitly state “ pnorm ”, ie the
so-called cumulative normal distribution function (it’s embedded in R):

> ks.test (salary2, "pnorm")
One-sample Kolmogorov-Smirnov test

data: salary2
D =1, p-value <2.2e- 16
alternative hypothesis: two-sided

It produces about the same as the text Shapiro- Wilks.

5 How to create your own functions

Shapiro- Wilks test all good, but not vectorized, like many other tests in R, so apply it to multiple columns
of data table will not work. did it on purpose, in order to emphasize the undesirability of multiple pairwise
comparisons (more about this in the chapter written about the two-dimensional data.) but in this case there
is no paired comparisons, and want to save time. possible, of course, pressing the up arrow ” “ carefully repeat
the test for each column, but the more correct approach—create a custom function. Here is an example of
such a function:

> normality <- function (data.f)

+{

+ Result <- data.frame (var = names (data.f), p.value = rep (O,
+ Ncol (data.f)), normality = is.numeric (names (data.f)))
+ For (i in 1: ncol (data.f))

+{

+ Data.sh <- shapiro.test (data.f [, i]) $ p.value

+ Result [i, 2] <- round (data.sh, 5)

+ Result [i, 3] <- (data.sh>.05)

+}

+ Return (result)

+}

To function to work, you need to copy these lines to the console window or burn them to a separate
file (preferably with the extension *. R), and then download the command source (). After that, it can
cause:

> normality (trees)
var p.value normality
1 Girth 0.08893 TRUE
2 Height 0.40342 TRUE
3 Volume 0.00358 FALSE

Function not only runs the Shapiro- Wilks test several times, but still legible, and the result of the
draws. Let us consider the function in more detail. The first line indicated its argument—data.f. Next,
surrounded by curly braces, is the function body. On the third line formed by an empty table data such
dimension, which we need in the end. Then begins the cycle: for each column test is performed, and then
(this is important !) Extracted from the test p-value. This procedure is based on the knowledge of the
structure of the test O—the list where the item p-value contains p-value. You can check this by looking at
the certificate, but you can experimentally (how?—See the answer at the end of the chapter). All p-values

13



are retrieved, rounded, compared with a threshold level of significance (in this case 0.05) and recorded in the
table. Then the table is given out “ ”. The proposed function completely optimized. It can easily be made
a bit shorter and also more ” “ smarter, so to speak:

> normality2 <- function (data.f, p =.05)

+{

+ Nn <- ncol (data.f)

+ Result <- data.frame (var = names (data.f), p.value = numeric (mn),
+ Normality = logical (nn))

+ For (i in 1: nn)

+{

+ Data.sh <- shapiro.test (data.f [, i]) $ p.value

+ Result [i, 2:3] <- list (round (data.sh, 5), data.sh> p)
+}

+ Return (result)

+}
> normality2 (trees)

The results, of course, no different. But you can see how you can add an argument, and at once with a
default value. Now you can write:

> normality2 (trees, 0.1)

var p.value normality
1 Girth 0.08893 FALSE
2 Height 0.40341 TRUE
3 Volume 0.00358 FALSE

That is, if instead of 5% to take a ten percent threshold, it is for the first column, you can reject the
normal distribution.

Has been said that the cycles in R should be avoided. Can it be done in this case 7 It turns out, yes:

> lapply (trees, shapiro.test)
$ Girth

Shapiro-Wilk normality test

data: X [[1L]]
W = 0.9412, p-value = 0.08893

$ Height

As you can see, things are even simpler ! If we want to improve the visual effect, you can do so:

> lapply (trees, function (.X) ifelse (shapiro.test (.X) $ p.value>
+.05, "NORMAL", "NOT NORMAL"))

$ Girth
[1] "NORMAL"

$ Height
[1] "NORMAL"

$ Volume
[1] "NOT NORMAL"
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Here applied the so-called anonymous function, function without a name, usually used as a last argument
type apply (). Also, a logical construct used ifelse ().
And finally, on this basis can make the third user-defined function (check yourself how it works):

> normality3 <- function (df, p =.05)

+{

+ Lapply (df, function (.X) ifelse (shapiro.test (.X) $ p.value>
+ P, "NORMAL", "NOT NORMAL"))

+}

> normality3 (list (salary, salary2))
> normality3 (log (trees +1))

Examples also interesting. First, our third feature can be applied not only to the data tables, but also
to present lists of unequal length elements. Secondly, the simple logarithmic transformation immediately
changed normality of columns.

6 Are percentages always accurate?

A useful feature of the study is the proportion of data (share). In statistics, a proportion understand the
attitude objects studied feature of the total number of observations. Since the fraction— is part of the
whole, the ratio to the whole part is in the range from 0 to 1. For convenience, it is multiplied by the fraction
of 100% yield—percentage number from 0% to 100%. Care should be taken to the calculation of shares and
do not forget about the original data. In the 1960s, the district department of agriculture has been found
that deaths of horses in one rural settlement of 50%. I had to make a competent commission to verify the
reasons for this heinous crime. Upon arrival, the Commission found that this settlement was only two horses,
including recently sdohshaya old horse, which was a cause of the formation and departure to the place of
commission!

Consider the problem, which is often found in statistical studies. How to find out whether different
percentage calculated by us from the true “ ” percent, ie the proportion of the objects of interest in the
general population ?

Here’s an example. At the hospital, a group of 476 patients, including 356 smokers. We know that
on average, the percentage of smokers in the hospital was 0.7 (70%). But in our group it a little more—
about 75%. In order to test the hypothesis that the proportion of smokers in the group of patients under
consideration differs from the average share of the hospital, we can use the so-called Binomial binomial test:

> binom.test (x = 356, n = 476, p = 0.7, alternative = "two.sided")
Exact binomial test

data: 356 and 476
number of successes = 356, number of trials = 476,
p-value = 0.02429
alternative hypothesis: true probability of success is not
equal to 0.7
95 percent confidence interval:
0.7063733 0.7863138
sample estimates:
probability of success
0.7478992

Since p-value less than 0.05 and significantly alternative hypothesis is that the proportion of smokers
(it is here quite mockingly called “probability of success”) is not equal to 0.7, then we can reject the null
hypothesis and accept the alternative, that is, to decide what our 74% different from the average in the
hospital 70% no accident. As an option, we used alternative = "two.sided", but could have been done
differently— test the hypothesis that the proportion of smokers in the group of patients considered exceeds
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the average proportion of smokers in the hospital. Then the alternative hypothesis would have to be written
as alt = "greater".

In the binomial, we can apply here the so-called test proportions. should be noted that it is used widely
because it is more versatile:

> prop.test (x = 356, n = 476, p = 0.7, alternative = "two.sided")
1 -sample proportions test with continuity correction

data: 356 out of 476, null probability 0.7
X-squared = 4.9749, df = 1, p-value = 0.02572
alternative hypothesis: true p is not equal to 0.7
95 percent confidence interval:

0.7059174 0.7858054

sample estimates:

p
0.7478992

As you can see, the result is almost the same.

Proportions test can be carried out with two samples, it uses all the same function prop.test () (two-
sample text for proportions), and mcnemar.test () (for Mac Nemara test, which takes place when the
sample related to each other). Learn how to use them, you can read the FAQ (and especially the examples
!) For both functions.

) %k Xk

The answer to the problem of function normality (). To find out where to get the values of
p-value, we must first recall that R almost everything that appears on the screen, this is the result—" print
various lists using invisible command print (). A list of easy to get “ 7 desired either by name or by number
(if, say, there is no name for the elements—so sometimes). First, find out what is in the list, the output of
the shapiro.test O:

> str (shapiro.test (rnorm (100)))
List of 4
$ Statistic: Named num 0.992
. - Attr (x, "names") = chr "W"
$ P.value: num 0.842
$ Method: chr "Shapiro-Wilk normality test"
$ Data.name: chr "rnorm (100) "
- Attr (x, "class") = chr "htest"

This list of 4 elements is an element called p.value, which is what we needed. Verify in any case, whether
it is:
> set.seed (1683)
> shapiro.test (rnorm (100)) $ p.value
[1] 0.8424077

That’s what we need. It remains only to insert it in our name.

7 Analyzing relationships: Two-dimensional data

Here we will talk about how to work with two samples. If we have two sets of numbers, the first thing we
might think to do is compare them. For this, we will need statistical tests.
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7.1 What is a statistical test?

It is time to learn about the core of statistics: hypothesis testing. In the previous chapter, we got a brief
introduction to constructing statistical hypotheses. We didn’t need to delve too deeply into this topic while
we were discussing single samples, but in analyses of relationships this concept is crucial.

7.1.1 Statistical hypotheses

We know that a sample needs to be representative, or adequately represent the true properties of the
population it’s drawn from. But how can we know whether the sample is representative unless we sample the
whole population? Even when we meet the criteria of randomization and repeatability, uncertainty remains.
Furthermore, when we consider that random sampling is a probabilistic process, all further considerations of
our samples need to be thought of in terms of probability. We will never be able, on the basis of our sample,
to infer the properties of the population with 100% certainty. We will only be able to formulate hypotheses
and calculate their probability.

Philosophers of science such as Karl Popper postulated that science can never prove a theory, but only
disprove it. If we collect 1000 facts that support a theory, it doesn’t mean we have proved it—it’s possible
that the 1001st piece of evidence will disprove it. For this reason, in statistical testing, two hypotheses are
put forth. The one we are trying to prove is called the alternative hypothesis (H1). The other is called the
null hypothesis (HO). The null hypothesis is a proposition of absence of something (for example, difference
between two samples or relationship between two variables). We can’t prove the alternative hypothesis, but
we can reject the null hypothesis and accept the alternative. If we cannot reject the null hypothesis, then
we must accept it.

7.1.2 Statistical errors

When you're performing a statistical test on a hypothesis, there are four possible outcomes.

Population Null true Alternative true

Sample

Y Y
Accept null ) ..".'.‘ .: .’ . ::._;

.. * M N 0.0.‘. M

Y Y . L[]
Accept alternative . ..’ : .’ . : -

° : X .o .t M

Table 1: Type I and Type II errors.

If we’ve accepted the null hypothesis HO, and the hypothesis is indeed correct for the population, then
we have reached the correct conclusion and everything is fine. Analogously with the alternative hypothesis.
(Obviously, we can’t really know what is true about the general population, but we are now simply considering
all possible outcomes.)

If we’ve accepted the alternative hypothesis, when in reality it is not correct for the population, we
have committed what is called a Type I statistical error—we have found a pattern that doesn’t exist. The
probability of committing a Type I error, called a p-value, is always reported when a statistical test is
performed. If the probability of committing a Type I error is too high, we must reject the alternative
hypothesis. The obvious question is: what probability is “too high”? Just as with choosing sample sizes (see
first chapter) there is no definitive answer to this question. The conventional answer is that the threshold
value should be 0.05—the alternative hypothesis is accepted if the probability of erroneously rejecting the
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null hypothesis is less than 5%. In medicine, where the cost of mistakes can be in human lives, the thresholds
are set more strictly, at .01 or .001 (that is, a pattern is considered to be real if the probability of an error
is negligible).

In this way, the result of a statistical test is mainly based on the probability of a Type I error. The
amount of confidence a researcher has that a conclusion based on a sample will be accurate for the sampled
population is reflected by... 7

In cases where we accept the null hypothesis when in fact the alternative hypothesis is true, we have
committed a type II error—that is, we fail to detect a pattern that actually exists. This parameter is
characterized by what is called the power of the statistical test. The smaller the probability of a type II
error, the more powerful the test.

7.2 Is there a difference? Or, comparing two samples

It is important to remember that the tests discussed here test for differences only between measures of central
tendency (for example, means) and assume that the variances of the samples approximately similar. For
example, the samples (example) and (example) have the same mean, but different variances, and thus would
not be detected as different from each other by statistical tests.

To conduct a statistical test, two hypotheses must be put forth. The null hypothesis is “there is no differ-
ence between these two samples”™ —that is, they are both drawn from the same population. The alternative
hypothesis is “there is a difference between these two samples.”

Your data must be organized in the form of two vectors, separate or organized into a data table. For
example, if you want to find out whether men and women differ in height, then one vector needs to consist
of the heights of men, and the other of the heights of women, with each entry in the vector corresponding to
a measurement of one person.

If the data are parametric, then a parametric t-test is required. If the variables that we want to compare
were obtained on different [objects?]|, we will use a two-sample t-test for independent variables, which is called
with the command t.test(). For example, if the two samples we want to compare are written in the first and
second columns of data table data, the command t.test(datal,1|, data [,2]) will carry out a two-sample t-test.

If the pairs of measurements to be compared were obtained on one [object?|, that is, the variables are
dependent (for example, heart rate before and after exertion as measured on the same person), then a paired
t-test must be used. To do this, specify in the command t.test that the parameter paired=TRUE.

The paired test is more powerful. Imagine that we were taking heart rate measurements before exercise
from one person, and after exercise from another. It would be unclear, then, what would explain the measured
difference: the effect of exercise or the two people generally having different heart rates. Paired measurements
allow each person to serve as their own control, and the difference between the measurements can only be
explained by the exercise factor.

If we are dealing with nonparametric data, a nonparameric Wilcoxon test (also known as a Mann-Whitney
test) is required, under the command wilcox.test(). Analogously to the t-test, paired data is specified by
specifying the parameter paired=TRUE.

Several examples follow, using the classic data set used in the original work of Student (the pseudonym
of mathematician William Sealy Gossett). This work was concerned with comparing the effects of two sleep
aids on the duration of sleep. In R these data are available under the name sleep. The column extra contains
the average additional duration of time asleep (compared to the control group), while the column group
contains the code of each drug.

> plot(extra ~ group, data = sleep)

This uses the “model formula” in this case, verb|extra group|.

The effect of each drug on each person is individual, but the average length by which the drug prolongs
sleep can be considered a reasonable representation of the “strength” of the drug. With this assumption, we
will attempt to use a t-test to determine whether there is a significant difference between the means of the
two samples corresponding to the two drugs.

> with(sleep, t.test(extralgroup == 1], extralgroup == 2],
+ var.equal = FALSE))

Welch Two Sample t-test
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data: extral[group == 1] and extralgroup == 2]
t = -1.8608, df = 17.776, p-value = 0.0794
alternative hypothesis: true difference in means is not
equal to O
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean of x mean of y
0.75 2.33

The parameter var.equal allows one to choose between the classic t-test, which assumes that the variances
of the two samples are equal (var.equal=TRUE), or the t-test with the Welch correction, which is free from
this assumption.

Although formally we cannot reject the null hypothesis (that the means are equal), the p-value (0.794)
is still small enough to suggest trying other methods of testing the hypothesis—increasing the number of
observations, checking again the normality of the distribution, and so forth. You might consider carrying
out a one-sided test—these are usually more sensitive. This should not be done. Most statistical tests are
designed to be carried out ad hoc, that is without knowing any additional information. Post hoc tests also
exist (for example, Tukey’s Honest Significant Difference test, discussed below), but there are not many of
these.

For comparing two samples, nonparametric tests also exist. One of these, the sign test, is so simple that
it doesn’t exist in R. It is, however, simple to do on one’s own. The sign test calculates the differences
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between every pair of elements in two samples of equal size (that is, it is a paired test). Then, disregard any
negative values and consider only the positive ones. If the samples are taken from the same distribution,
then approximately half the differences should be positive, and then the familiar binomial test will not find
a significant difference between 50% and the proportion of positive differences. If the samples are different,
then the proportion of positive difference should be significantly more or less than half.

Exercise. Come up with R code to carry out such a test, and test the two samples that were mentioned
at the beginning of the section.

We will proceed now to more complicated nonparametric tests with an example. The standard data
set airquality contains information about the amount of ozone in the atmosphere around New York City
from May to September 1973. The concentration of ozone is presented as a rounded mean for every day, so
to analyze it conservatively we use nonparametric methods. (As an extra exercise, determine how close to
normally distributed the monthly concentration measurements are.)

Let us test the hypothesis that ozone levels in May and August were the same:

> wilcox.test(Ozone ~ Month, data = airquality,
+ subset = Month %in% c(5, 8))

Wilcoxon rank sum test with continuity correction

data: 0Ozone by Month
W = 127.5, p-value = 0.0001208
alternative hypothesis: true location shift is not equal to O

Since Month is a discrete variable (the number simply represents the month), the values of Ozone will
be grouped by month. We aksi used the parameter subset with the operator %in’%, which chooses May and
August, the 5th and 8th month.

The test rejects the null hypothesis, of equality between the distribution of ozone concentrations in May
and August, fairly confidently. This is plausible because the ozone level in the atmosphere strongly depends
on solar activity, temperature and wind.

Differences between samples are well represented by box plots,

> boxplot(Ozone ~ Month, data = airquality,
+ subset = Month %in% c(5, 8))

Notice that in the boxplot() command we use the same formula as the statistical model.

It’s conventionally considered that if the boxes overlap by more than a third of their length, the samples
are not significantly different.

The t-test and Wilcoxon test can be used on one sample, if the goal is compare it to a particular standard.
These are called one sample tests. The null hypothesis in this case is formulated as equality between the
sample mean and the given value of p.

Exercise. In the data file otsenki.txt are the grades of a particular group of students for the first
academic quarter (in the column labeled A1) and the second quarter (A2), as well as the grades of a second
group of students for the first quarter (B1). Do the first group’s grades for the first and second quarters
differ? Which class did better in the first quarter—A or B?

Exercise. A supermarket has two cashiers. To analyze their work efficiency, the length of the line at
each of their registers is recorded several times a day. The data are recorded in kass.txt. Which cashier
processes customers more quickly?

7.3 Is there an association? Analysis of tables

How do you compare two samples of categorical data? For this, contingency tables are used. A contingency
table can be built with the function table():

> with(airquality, table(cut(Temp, quantile(Temp)), Month))

Month
5 6 7 8 9
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(56,721 24 3 0 1 10
(72,791 515 2 9 10
(79,851 1 719 7 5
(85,971 0 510 14 5

The rows of this table are temperature intervals, while the columns are months. Each cell’s value is the
number of observations in each month that fall into the given temperature interval.

If there are more than two factors, R will build a multi-dimensional table and print it as a series of
two-dimensional tables, which is not always convenient. A “flat” contingency table can be built if all the
factors except one are combined into one multidimensional factor. To do this, use the command ftable():

> ftable(Titanic, row.vars = 1:3)

Survived No Yes
Class Sex Age

1st Male Child 0 5
Adult 118 57

Female Child 0 1

Adult 4 140

2nd Male Child 0 11
Adult 154 14

Female Child 0 13

Adult 13 80
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3rd Male Child 35 13

Adult 387 75

Female Child 17 14

Adult 89 76

Crew Male Child 0 0
Adult 670 192

Female Child 0 0

Adult 3 20

The parameter row.vars allows you to specify the variables in the data set that should be combined into one
factor, the subcategories of which will be indexed by the rows of the contingency table. Col.vars does the
same thing with columns.

The function table can be used for other purposes as well. The simplest is calculation of frequencies.

d <- factor(rep(c("A","B","C"), 10), levelS=C(IIAII’IIBII,IICII,IIDII’
|lEll))

is.na(d) <- 3:4

table(factor(d, exclude = NULL))

vV V + V

A B C <NA>
9 10 9 2

The function mosaicplot () creates a graphical representation of a contingency table.

> titanic <- apply(Titanic, c(1, 4), sum)

> titanic
> titanic
Survived
Class No Yes
1st 122 203
2nd 167 118
3rd 528 178
Crew 673 212
> mosaicplot(titanic, col = c("red", "green"), main = "",

+ cex.axis=1)

The function chisq.test() allows one to test a hypothesis about independence of two factors with a
chi-squared test. For example, let’s see whether hair and eye color are associated:

> x <- margin.table(HairEyeColor, c(1, 2))
> chisq.test(x)

Pearson’s Chi-squared test

data: x
X-squared = 138.2898, df = 9, p-value < 2.2e-16

(The same effect can be achieved by using the contingency table as the argument in the function
summary () ).

The dataset HairEyeColor is a multidimensional contingency table. For the summed frequencies across
all dimensions except two, the function margin.table is used. The result will be a two-dimensional contingency
table. The chi-squared test takes as its null hypothesis the independence of the factors, so in our example,
since we reject the null hypothesis, we find that the factors are associated.

To graphically represent these correspondences, the function assocplot() can be used:

> x <- margin.table(HairEyeColor, c(1,2))
> assocplot(x)
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The plot shows the differences between expected and observed values. The height of the bar shows the
absolute value of this difference, while its position shows the sign of the difference. It is clear that among
fair-haired people blue eyes are overrepresented and brown eyes are underrepresented.

Let us examine a further example. A large group of statistical epidemiologists gathered for a banquet. The
next morning, many woke up with symptoms of food poisoning. Because they were statistical epidemiologists,
they decided to remember what each of them ate at the banquet, and thus determine what was the cause of
the illness. The gathered data take the following format:

> tox <- read.table("data/otravlenie.txt", h=TRUE)
> head (tox)
ILL CHEESE CRABDIP CRISPS BREAD CHICKEN RICE CAESAR TOMATO

1 1 1 1 1 2 1 1 1 1

2 2 1 1 1 2 1 2 2 2

3 1 2 2 1 2 1 2 1 2

4 1 1 2 1 1 1 2 1 2

5 1 1 1 1 2 1 1 1 1

6 1 1 1 1 1 1 2 1 1
ICECREAM CAKE JUICE WINE COFFEE

1 1 1 1 1 1

2 1 1 1 1 2

3 1 1 2 1 2

4 1 1 2 1 2

5 2 1 1 1 1
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The first variable (ILL) tells whether the participant got sick or not (1 or 2 respectively); the remaining

variables correspond to different foods.

A simple glance at the data will not reveal anything, as the banquet had 45 participants and 13 different

foods. Therefore, statistical methods must be used. Since the data are nominal, a contingency table can be
used:

>
+ {
+
+

+ }
(1]
(1]
(1]
(1]
[1]
(1]
(1]
[1]
(1]
[1]

for (m in 2:ncol(tox))

tmp <- chisq.test(tox$ILL, tox[,m])
print (paste(names(tox) [m], tmp$p.value))

"CHEESE 0.840899679390882"
"CRABDIP 0.94931385140737"
"CRISPS 0.869479670886473"
"BREAD 0.349817724258644"
"CHICKEN 0.311482217451896"
"RICE 0.546434435905853"
"CAESAR 0.000203410168460333"
"TOMATO 0.00591250292451728"
"ICECREAM 0.597712594782716"
"CAKE 0.869479670886473"
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[1] "JUICE 0.933074267280188"
[1] "WINE 0.765772843686273"
[1] "COFFEE 0.726555246056369"

A for() loop allows us not to write the code for the test 13 times. The result is that two foods exhibit
significant associations with illness—Caesar salad and tomatoes. We can examine these with an association
table:

> assocplot(table (ILL=tox$ILL, CAESAR=tox$CAESAR))

CAESAR

ILL

A very similar situation is seen with tomatoes. The culprit is identified! Almost. After all, it’s unlikely
that both dishes were contaminated. Now we must try to determine what was the main cause of the food
poisoning. We will return to this subject in our introduction to logistic regression.

X %k X

Besides contingency table-based methods like the chi-squared test, nominal and ordinal data can be
analyzed with various more specialized methods. For example, to compare results of expert evaluations,
concordance tests are commonly used. Among these tests are the Cohen test, which calculates the Cohen’s
kappa, a measure of agreement ranging from 0 to 1, and also calculates the p-value for the null hypothesis that
kappa=0. An example: in 2003, two groups independently and approximately at the same time investigated
an island in the White Sea. The goal was to compile a comprehensive list of all the plant species present on
the island. The data were binary (0 means the species is absent on the island, 1 means it is present). The
results are recorded in the data table pokorm03.dat:
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> pok <- read.table("data/pokorm_03.dat", h=TRUE, sep=";")
> library(concord)

> cohen.kappa(as.matrix(pok))

Kappa test for nominally classified data

2 categories - 2 methods
kappa (Cohen) = 0.718855 , Z
kappa (Siegel) = 0.67419 , Z
kappa (2*PA-1) = 0.761658

8.56608 , p = 0
7.11279 , p = 5.68656e-13

Kappa is close to 1 (0.718...), and the probability of the null hypothesis is zero. This means that we can
consider the results of the investigations to be in concordance with each other.

Exercise. The file prorostki.txt contains results of an experiment examining germination of seeds
infected with different types of fungi. In all, three fungi were tested, 20 seeds were tested for each fungus,
and therefore with the controls 80 seeds were tested. Do the germination rates of the infected seeds differ
from the controls?

7.4 Analysis of correlations

The measure of linear correlation between two variables is the Pearson correlation coefficient . The absolute
value of the correlation coefficient can vary from 0 to 1. A correlation coefficient of 0 means that the
values of one variable are unconnected with the values of the other variable. A correlation coefficient of 1
is evidence of a linear relationship between the two variables. A positive value of r means the correlation is
positive (the higher the value of one variable, the higher the value of the other), while negative values mean
the correlation is negative (the higher the value of one, the lower of the other). The degree of dependence
between the variables is reflected by the coefficient of determination: this is the correlation coefficient squared.

The correlation coefficient characterizes the extent of the linear relationship between the variables. Two
variables can be closely correlated, but if the relationship is not linear but for example parabolic, the cor-
relation coefficient will be close to 0. An example of such a relationship could be the relationship between
a person’s energy level and their ability to solve math problems. A person in a state of low energy (for
example, falling asleep) or a state of very high energy (for example, excited by watching a football game)
will both have a much lower ability to solve math problems than a person at an intermediate energy level.
For this reason, before evaluating the relationship quantitatively, one must examine it graphically. The best
option here is a scatterplot, created in R with the command plot() with two vector arguments.

It is also important to note that the discussion here deals with the existence and strength of a correlation
between variables, not nature of this relationship. If we find a significant correlation between variables, this
could mean that A depends on B, B depends on A, A and B depend on each other, or A and B depend on
a third variable C but have no relation to each other.

A famous example is the correlation between ice cream sales and fires. It would be strange to suggest
that eating ice cream causes people to be negligent and start fires, or that experiencing fires causes people
to buy ice cream. In fact, both of these parameters depend on air temperature.

To calculate the correlation coefficient in R, the function cor () is used

> cor(5:15, 7:17)

[1] 1

> cor(5:15, c(7:16, 23))
[1] 0.9375093

In the simplest case, it is given two arguments (vectors of equal length). It can also be called with one
argument if using a matrix or data table. In this case, the function cor() calculates a correlation matrix,
composed of correlation coefficients between all pairs of data columns.

> cor(trees)

Girth Height Volume
Girth 1.0000000 0.5192801 0.9671194
Height 0.5192801 1.0000000 0.5982497
Volume 0.9671194 0.5982497 1.0000000
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If the numbers of observations in the columns are unequal (i.e. some columns are missing data), the
parameter use in the command cor() can be used. Its default setting is all.obs, which results in an error
message when any data points are missing. If use is set to complete.obs, observations with missing data are

automatically excluded.

8 Choosing right method
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9 Essential commands

? Help

<- Assign right to left

[ Select part of object

$ Call list element by name

abline() Addition to the graph: line from linear re-
gression model

anova() Analysis of variation
as.character() Convert to text
as.numeric() Convert to number
boxplot () Boxplot

c() Concatenate into vector

cbind() Concatenate columns into matrix
chisq.test() Chi-squared test

cor() Correlation of multiple variables
colSums() Sum every column
cor.test() Correlation test
data.frame() Make data table
dotchart () Replacement for “pie” graph
download.file() Take file from Internet
example() Call example of command
file.show() Show file

function() Make new function

head() Show first rows of data table
help() Help

hist() Histogram

legend() Addition to the graph: legend
length() Length of variable

lines() Addition to the graph: lines
1m() Linear model

log() Natural logarithm
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max () Maximal value

mean() Mean

median() Median

min() Minimal value

NA Missed value

names () Show names of elements
nrow() How many rows?
order () Create order of objects
plot () Graph

points() Addition to graph: points (dots)
predict() Predict values

q() Quit R

for the

qgnorm() ; gqline() Check normality:

graph
rbind() Concatenate into matrix by rows
read.table() Read data file
rep() Make the sequence of same elements
sample() Random selection
savehistory() Save history of commands
scale() Make all variables comparable
sd() Standard deviation
source() Run script
str() Structure of object
summary () Main descriptional statistics
t() Transpose matrix (rotate on right angle)
t.test() Student test (t-test)
table() Make contingency table
text () Addition to graph: text
wilcox.test() Wilcoxon and Mann-Whitney tests

write.table() Write object to disk



10 Types of data

Is it possible to arrange data along a numeric axis?

25

Are the data result Is it possible to use
of measurements or counts? only 0 and 1

for data representation?
ye/ \no
Continuous?
Binary data Common
Ranked data categorical data
yes 70

Continuous Discrete
measurement measurement
data data

11 Multivariate methods

Does preliminary classification exist?

S

Do we need Are groups
diagnostic characters? hierarchical?
Regression Hierarchical Is yesta
trees cluster a matrix of distances?

M, analysis
Random Forest, yes no
Discriminant

analysis
Y Multidimensional principal
scaling component
analysis

12 Example of R session
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