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Small foreword

I use computer technologies for a long time, and learned many good stuff. To my
amazement, I always perform routine work on the computer much faster then my
colleagues. Therefore, I believe that if somebodywill learn at least some ofmymeth-
ods, they will perform computer-based work in a more efficient way. This is the goal
of the “Computer literacy: make computer do the dirty work” book.

I only want to mention that I am biologist and like command line and (very primi-
tive!) programming. This explains some features of the book.
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Chapter 1

Text

1. Essentially, computer understands only numbers. Simple text interface was
developed to make communication easier. Despite simplicity, it is extremely
powerful and have much more capabilities then point and click graphical in-
terface.

2. There are two main issues with simple text, line ends and encoding:

(a) Line endsmust be encoded as a separate invisible symbol(s). The way his-
torically differ between operating systems: old Mac, Windows and UNIX.
Most of text software is aware of these differences but there are some (like
Windows Notepad) which do not do this job well.

(b) Encoding regulates how many bytes are spend per symbol of text. There
are (among others) 1 and 2 bytes encodings.

(c) 1 byte encodings likeASCII or Latin-1 (ISO8859-1) could only support 256
symbols, this is enough for core English but not enough for many world
languages, especially if they used together. Actually, ASCII encodes only
128 symbols so it is 7/8-byte encoding.

(d) 2 byte encodings like UTF-8 could support 256 × 256 = 65536 symbols
which practically is enough for most of current languages together.

(e) Some systems use 4 byte or 8 byte UTF-16 or UTF-32. The first is quite
popular on Windows.

(f) UTF-8 has one advantage over other multi-byte encodings: English letter
are encoded like in ASCII. This is useful and saves traffic.

(g) UTF-8 is one (of many) realizations of Unicode standard which covers all
symbols which humanity developed during its history.

(h) And one more detail: some computers read bytes from right to left (from
second to first), and others from left to right. So UTF-8 text files have byte
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order mark (BOM) in the beginning of file. Sometimes, if BOM is acciden-
tally absent, software could have troubles with UTF-8 encoded files.

Text software

There are many editors which are capable to work with simple text, i.e. text without
formatting, which symbols only (including invisible ones like line ends, tabulation
etc.) However, only few of them are really cross-platform (work on Windows, Linux
and macOS) and even less are free and open source:

• Geany. Fast, has many plug-ins which enhance it.

• Kate. Part of the KDE environment but could be used separately.

Exercise 1

Open the text editor, type or copy-paste two English wordswith accented symbols,
save this text in Latin-1 encoding, and (under the different names) in UTF-8 encod-
ing. How different are these files (in bytes)? Why? Explain.

How to type accented symbols? The easiest way is copy-paste them. Many operation systems
have character tablewhich allows to pick these symbols. Finally, there are operation system
specific ways to enter them with keyboard (see https://en.wikipedia.org/wiki/Unicode_
input). For the last method, you will be required to know Unicode number of symbol you
want.

How to find English words with accented symbols? Hint: these are words taken from other
languages like Spanish or French.

Exercise 2

Now look on the following 10 words:

one two three fоur five six sеven eight nine ten

Two of them are not English words because they contain “alien” letters in non-
English encoding. How to find which two?

https://en.wikipedia.org/wiki/Unicode_input
https://en.wikipedia.org/wiki/Unicode_input
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Operating systems

Operating systems provide ways to control the computer. From the end user point
of view, they all similar but in reality their internal structure could be radically dif-
ferent. Essentially, there are three operating systems:

Operation systems (OSes)

Windows NT
wwooo

ooo
ooo

o

Windows 10 etc.
��

POSIX
''OO

OOO
OOO

OO

Linux
��?

??
??

??

macOS
����
��
��
�

Windows NT Has a long history andmultiple versions. Zillions of applications, and
many old ones are still working (backward compatibility). Does not relate
with UNIX. Completely proprietary and closed.

macOS UNIX-based (better name is POSIX). Again, long history butmuch less back-
ward compatibility. The least number of free / open source software among all
three systems. Uniform graphical interface based on PDF (see later). iPhone
OS (iOS) is close tomacOS.

Linux UNIX-based but with solid core (two others have microcore, small “center”
of OS). Free, open source, developed non-commercially, with community. An-
droid and ChromeOS are close to Linux.

It is possible to run one operating system from another with virtual machine and
other virtualization technologies. For example, JS Linux is Linuxwhich works within
browser window.

Many operation systems have system monitors, programs which allow you to con-
trol howmany resources are taken by application, find hidden processes or even stop
unwanted activity.
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Exercise 3

On your computer (with any of above OS) most of programs are closed with mouse
click. It is possible however to close them indirectly, through system processesmon-
itor. Run one application, then run monitor, then close applicationwithout touch-
ing application window.

How to run this monitor on different OSes?

Windows Press Ctrl+Shift+Esc to launch Task Manager. Click the Processes tab and find
your application. Alternatively, download and install Process Explorer application; in
many ways, it works much better then default Task Manager.

macOS InApplications / Utilitiesmenu, find theActivity Monitor, or run Terminal application
and go Linux way (below)

Linux Either run System Monitor (or similar name, typically in Applications / System Tools
menu), or start the terminal, then find the number of process with commands ps and
grep, then kill this process by number with command kill:

$ ps aux | grep galculator
user 20160 0.6 0.1 ... galculator
...
$ kill 20160
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Files and file systems

Computers operate with numbers, and these numbers are organized in chunks, files.
Every file has a descriptor, and file system is responsible for the association between
file names and descriptors.

When you want to “open” the file, your application asks OS, OS asks file system, file
system finds catalog of descriptors and finally finds the file and helps application to
load it.

File system is a also responsible for file deletions, file restoration, file relocation,
copying, linking, directories and many more.

All recent file systems are hierarchical, tree-like. Files in directories, and directories
in another, higher level directories. Finally, there is a highest level, root location (or
locations):

NTFS Windows file system. Case-insensitive, symbolic links (when one file has
several names) restricted. Has many (but little used) advanced features. File
names with " * : / \ ? < > | are not allowed; there are also forbidden file
names: AUX, CON, NUL, PRN, COM#, LPT# (where # is any digit). Allows very long
file names (thousands of symbols). Path delimiter (which separate directories)
is either backslash or slash.

FAT Older Windows file systems (several versions), still widely used, especially on
external devices like flash drives. Case-insensitive, true symbolic links absent.
Even more restrictive file naming rules, older versions do not allow more then
12 symbols (8 for name + dot + 3 for extension). Path delimiter is backslash.

HFS macOS file system, case-insensitive, with symbolic links. Few file naming re-
strictions, e.g., colon (:) which on older Macs was used to separate directories.
File name could be 255 Unicode symbols. Path delimiter is colon (deprecated)
or slash.
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extfs Linux file systems (several versions in place), with symbolic links and almost
no restrictions on file names (could be 63 Unicode symbols). Case sensitive
which means that file.txt and File.txt are different files. Path delimiter is
slash.

Case-sensitivity (or insensitivity) is probably most notorious feature of common file
systems. One of common misunderstandings, for example, is to save JPEG file (say,
a photo for Web page) with uppercase .JPG extension but link is as lowercase (.jpg).
Web page looks well onWindowsmachine but onWeb server (which is typically some
Linux) fails to show the photo.

In addition, various file operation tools add their own restrictions. For example,
exclamation mark is allowable but may cause trouble when you type this name in
terminal. Space is good, but some programs regard space are file name separator.
And symbols from national languages (Chinese of Russian) cause additional trouble,
especially when they visually similar to English ones like Russian “о” and English “o”
(do you see the difference?). With somany specific rules, the safest way to name files
is:

Use only English lowercase letters, 0–9 digits, underscore and dot
(only for extension); the shorter is the name, the better.

Exercise 4

How to understand that o-like letters above are actually different?

File name extensions

Dot and three symbols (sometimes, 1–2, rarely 4 or more) in the very end of the
file name were invented to allow applications “understand” the type of file (in other
words, the way this file is structured). Whereas (except on Windows) extension is
not essential, this is quite handy and should be used wherever possible.

Unfortunately, Windows and macOS by default hide file extensions. This is not only
disinformative but also unsafe as many harmful software (viruses, malware) use this
setting. To make extensions visible:

macOS Go to Finder preferences, choose Advanced tab and select the appropriate
box.

Windows Click View tab in File Explorer, choose Options, then View again, unselect
appropriate box and apply this to all folders.
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Organize your files

The basic principles of file systemorganizationwere developed inUNIX systems after
many years of tries and errors. Most important:

1. Try to separate (a) user files, (b) user-created application configuration files
and (c) system files. The good idea is also to separate (d) archive files.

User files are text, images, audio, video etc. created by user. Archive files are files cre-
ated by other people.

2. Separation should be as deep as possible, the best variant is to keep all four
above groups on different physical devices.

3. Make meaningful names of files and directories. For temporary goals however,
make names as short as possible, numeric names like 1.txt are probably the
best.

4. Avoid making “file dumpsters” where many files lay non-classified.

5. Make regular backups and keep them physically distant from the computer.
Even better is to make two separate backups each time.

6. Not only make backups but also regularly check if backups are not damaged.

There many possible ways to organize your files. One is to make only one working
directory (saying, wrk) and place all your files there by subdirectories.

What are these subdirectories, is really personal, however, it is highly recommended
tomake one of them (e.g., wrk/temp or wrk/tmp) directory for quick tasks, temporary
and/or recent work which. It is also handy to make your browser download stuff
there.

File operations

Files could be created, renamed, copied, moved or deleted. Each of these operations
has its own specific.

Creation Typically, it is not easy just to make the file without content. On Linux,
however, this might be done with touch command.

Rename Note that this is not an operation with file, this is an operation with file
system. If you rename the file, you change the list of files in current directory
and/or in particular place of the current file system.

Copy Typically, this is creation of new file + writing to it.
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Move Copy, then remove the first one. However, if this operation does not go out-
side of particular physical device (like one hard disk or one flash drive), it is
analogous to renaming and therefore very fast.

Remove Depending on operation and file system used, this is either reversible or
(more frequent) non-reversible so you delete your files forever. Many OSes
have “trash” mechanism which moves “deleted” files into the trash directory
first, and “emptying trash” is a permanent removal. There are undelete/unerase
tools around which might claim an ability to restore even after emptying the
trash, but most of them are not very effective, especially if user applies them
long after deletion.

File metadata

“Metadata” is something about the file, not directly related with file content. For
example, metadata might tell about what is on this image, when it was taken and so
on. There are several approaches:

1. Keep metadata within a file, sometimes in a way hidden from user. This is how
cameras keep their metadata in JPEG files, or office programs—within docu-
ments. This way is productive enough but often works against privacy and
also depends on particular software.

2. Keep metadata in a file directory, as a special feature of file system, or even
simpler, as a separate text file, descript.ionwith two columns: file name and
file description.

File managers. OFM

Almost every operation system has a way to control file creation, naming, moving,
linking etc. Typically, there is some file manager application. There are many of
them. Best file managers employ simple idea of two panels which both contain file
lists, and user do all operations from left to right or from right to left. Advantage of
these file managers (so-called OFMs) is that they save time, file operations are 2–5
times faster then in other programs!

In addition, OFMs host multiple useful functions: user menus, internal editors and
viewers for different file types, embedded archiving and compression functions, abil-
ity to access networks with different protocols, and many others. There are several
OFMs which are cross-platform, e.g., work onWindows,macOS and Linux:

• Double Commander. Fast, intensively developing software, has many plug-ins.
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• muCommander. Requires Java. Generally, more stable thenDouble Commander.

Exercise 5

Create 9 files named file1.txt, file2.txt, ..., file9.txt. How long did it take?
How to speed up this process?

Privacy and cleaning

Various software leave numerous traces on your computer. If it is not what your
want, and if you want to keep (relative) privacy, there are several programs which
wipe outmost conspicuous unwanted results of your work. BleachBit, for example, is
completely cross-platform and not only increase privacy but also free the disk space.

Among others, BleachBit helps to clean:

1. Browsers’ cache, storagewhich browsers use to improve the user-visible speed.
Cache often keeps older versions of documents, and it is not always easy to
clean it in order to obtain the recent version.

2. Cookies, identificators which allow external Web sites to remember you and,
for example, do not give you discount prices even if they available to others.

3. Temporary files of various kinds, including Windows Thumbnails.db which
presents in every directory with images, or macOS .DS_Store, which is located
on any device which came out of Mac computer.
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Internet

Internet protocols

When computers connect through the network, they perform multiple standardized
operations; this is network protocol. Many of them now are only little more then
historical relics, and only few are common:

HTTP Hypertext protocol which allows browsing with hyperlinks; this is now core
Internet protocol. Important is to know that if your computer becomes HTTP
server, your file system is not accessible, HTTP does not understand it. You can
create a file on your Web site but if there is no link to it, nobody, even Google
or other indexing system, will not know about it.

HTTPS Somehow similar to HTTP but everything is encrypted, therefore, no third
party will know what you send or receive. Now there is a movement to replace
HTTP with HTTPS wherever possible, for obvious reasons.

If you want to connect securely, your computer must know if it cant trust the
other side. This is why it uses certificates. In practice, however, it is possible
to replace good certificate with a bad one, and then listen to your “encrypted”
connections which are not encrypted anymore (this is called MiTM, man-in-
the-middle attack). So even with HTTPS, you do not have 100% guaranteed
privacy.

FTP File transfer protocol. This will see your file system (if your computer is FTP
server).

SSH Secure shell connection. Allows to connect two computers to (1) work remotely
in the terminal and (2) transfer files through the encrypted channel. Useful,
especially for the remote administration, updates and almost everywherewhen
you need to work on more then one computer.
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mailto Strictly speaking, this is not a protocol, it is more like a gateway to multiple
protocols responsible for the sending of email messages. Encryption here is
still rare.

DOI Again, not exactly a protocol but identifier which allows to refer books and ar-
ticles.

magnet This is from the big family of peer-to-peer protocols which allow to connect
two or more computers without server or with the minimal participation of
server. Useful for sharing files.

Exercise 6

Sometimes, when you enter https:// instead of http:// as URL, your Internet
browser reports things like “Secure Connection Failed”. But the reverse is not true.
Why?
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Licenses

Internet brought many new things to the society, and free software is one of themost
important. “Free” as a freedom, not as free beer, they frequently say. There aremany
variants of free licenses, some are shortly explained below:

GNU GPL This license relates with GNU Project, idea to re-create UNIX-like oper-
ation system as free and open source. And yes, they did what they planned.
One (theoretically) can sell GNU GPL software, but license states that you also
must distribute the source code and that is forbidden to restrict the free re-
distribution.

Creative Commons The big family of free licenses which provide multiple ways
how to use and modify product, its source code and how to credit authors.

Public domain The most free license. Public domain means that anyone can use,
modify, sell, buy, even without any credit to the original author. These notes
are public domain.
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Intro to spreadsheets

Spreadsheets is the one of the most basic way to work with data. They were created
mostly for accounting needs, but found many other uses, even in scientific appli-
cations. One of most known is Microsoft Excel but there are many others including
freely available LibreOffice Calc and Gnumeric. They all similar, and following should
be applicable to any of them.

Spreadsheet cells (those little rectangles) can hold numbers, words, or formulas
(which then produce numbers). Try filling in some cells with numbers and others
with words. Click on it to highlight it and start typing your entry. Use Enter to
finish an entry and move down. Tabmoves you to the right.

You can also use F2 key or themouse to double click on a cell that youwish to change,
or you can use the arrow keys to move around in the spreadsheet.

What happens if your words are longer than a cell? Try this with the cell to the right
being empty and again with it having some entry.

Format

Cells have different formats and automatically convert their contents. Select a cell
and change its format with the Formatmenu (Ctrl+1).

One of strange (for unexperienced users) features is the automatic date / number
conversion. Suppose that you have a cell with text format (enter something in a
cell, and then change format to “text”). Now, enter some date like “Nov 20, 2017”.
Then change cell format to “date”, then change cell format again, now to “number”
and start to edit cell content (press F2). If you are unlucky (some spreadsheet work
this way, some not), then instead of date, you will see “43059”. Why this particular
number, is easy to explain: this is the number of days from the beginning of “Excel
era” (January 1, 1900) to November 20, 2017.
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What is much more important that this (and related) conversion problems already
brought numerous mistakes into public databases (see, for example, publications
at https://www.ncbi.nlm.nih.gov/pubmed/15214961 and https://www.ncbi.nlm.
nih.gov/pubmed/27552985). Therefore, you must know how to avoid them.

First, you can use the universal date format, “YYYYmmdd”whereNovember 20, 2017
is just a number “20171120”.

Second, you can protect your “Nov 20, 2017” with text protection sign, apostrophe
(or single quote):

'

This sign tells that everything after is just a text (and therefore suppresses conver-
sion of any kind).

Formulas

Enter the value 23 into cell D104 (use the column and row headings to find cell D104).
Then come back to the top of the spreadsheet.

All formulas start with an equals sign =. Select cell D4 and enter the following for-
mula:

=2*D104-4

The value 42 (which is 3 + 2(23)) should appear. When you select a cell, the formula
that is actually in the cell appears in the line at the top of the screen. What appears
in the cell is the value of that formula.

Drag and fill

Clear out column A (select and delete). Enter the number 1 in cell A1 and the formula
=A1+1 in cell A2.

Then select cell A2 and move the cursor to the lower right corner of that cell. The
cursor (which is usually a white plus sign) should change, depending on your soft-
ware. Using that special cursor, drag the cell down to A10 so that the numbers 1
through 10 appear. This dragging “copies” the formula to the cells below. Check the
formulas in this column and figure out your formula changed during the copying.

Now select the entire column of ten numbers and, using the special cursor from the
lower right hand corner, copy them to the two columns to the right of the first. What
happened to the formulas this time?

https://www.ncbi.nlm.nih.gov/pubmed/15214961
https://www.ncbi.nlm.nih.gov/pubmed/27552985
https://www.ncbi.nlm.nih.gov/pubmed/27552985
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If you move a column, you should cut and paste. Select cells from A1 to A10, then
select “cut”. The border of the cells starts to shimmer. Select cell B12 and choose
the “paste” (or type Ctrl+V).What happened to the formulas?

OK, what if you do not want to copy (or cut) formulas but want to copy results? Select
B12:B21, copy, then use Paste Special to choose Value and insert them into A1 again.
What happened?

Protect

You can protect a cell name in a formula from being changed when the formula is
moved or copied by using a dollar sign in front of the column letter or row number
or both. For example, insert 1 in C12, then select cell C13. Change the formula to
=$C$12+1, and then fill it down the column. All the numbers in the column after C12
should now be the same; the protected formula does not change when you copy.

Now enter the value 2 into cell C10. Change the formula of C13 to =C12+C$10 and
copy it down the column. Now the column counts by twos. Why? Changing cell C10
automatically changes all the other cells to count by whatever value you want. How
to count by threes?

Ranges

Some functions use a range of values. For example, if we want to sum the ten values
in the first column. Enter the formula =sum(B12:B21) into cell B11. It should sum
those ten numbers. What is your result?

Now, sum all your spreadsheet values (do not forget about D104). How to do it?
What is the result?

Conditions

What if you want a spreadsheet which behaves? For example, if you have budget of
100 dollars, is it possible to make spreadsheet warn you about overdraft?

Remove all values from current spreadsheet. Enter numbers 20, 5, 15, 30, 3.70 in
cells A1:A5. Now cell B1will have formula to summarize your spendings in A column:
=sum(A1:A100), there will be a space for 95 more spendings. Cell B2 will have a
budget (100), and cell B3 will warn you if your spendings are over 100 dollars:

=if(B1 > B2, "Overdraft!", "Still OK").

How tomodify the formula andmake spreadsheet warn you if your spendings a close
(like 99%) of the budget? How to combine these two conditions?
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Tab delimited

There are many spreadsheet formats but all of them are not plain text. However,
your basic principle is to keep plain text wherever possible.

There is the plain text format which consist of multiple rows of text, and within each
row, there are invisible big spaces, tabs, which split row into cells. This tab-delimited
text file is a universal replacement of any data spreadsheet (i.e., spreadsheet without
formulas and formatting).

It looks like:

First 2nd Third␣column
1 2 3
4 5 6

Enter the above into text editor (make white spaces tabs, only one white space is an
actual space, it is marked with ␣ character). Tab typically looks like white space but
it relates with different symbol (frequently designated as \t).

Then save this file, saying, as 1.txt and try to import it into your spreadsheet ap-
plication.

Now, enter any data in your spreadsheet, export it as a tab delimited text file (saying,
2.txt) and open it in text editor. Even simpler way is (on Linux and Windows) to
copy your cells and then paste them into text editor. By default, they inserted as tab
delimited!
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Markup and ebooks

Plain text

Plain text is an amazingly simple way to interact with computer. By definition, plain
text is a also human-readable and therefore serves as a simplest ebook example.
Conventions are really easy:

• Make paragraph one long line

• Separate paragraphs with empty line

• No double spaces

HTML

My first Web page

HTML, hypertext markup language based on plain text. So in theory, one’s first
HTML may look like:

Hello, World!

And if you save it in the text editor as, saying, 1.htm and then open it inWeb browser,
your output will look somewhat like:

Hello, World!

Excellent. Now try two lines:

Hello, World!
Second line.

But output is:

Hello, World! Second line.
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Well, something went wrong. You actually forgot the markup! Here it is:

<p>Hello, World!
<p>Second line.

Output:

Hello, World!
Second line.

This actually is not a proper HTML, and works well only because browsers are for-
givable and do not mind mistakes if there is still a way to interpret your input. The
minimal proper HTML is:

<!DOCTYPE html>
<title>Title</title>
<p>Hello, World!</p>
<p>Second line.</p>

which outputs almost the same thing as above (but try to find one difference).

How to work with HTML

Now I hope that you already understood the main principle of working with markup
file like HTML: you have two instances, not one.

First instance if your plain text file (which is open in some text editor), you change it,
save it and then go and update the second instance, your browser window (to update,
best is to use keyboard: F5 or Ctrl+R work on most browsers).

If you are not satisfied, go to text file, and change it again, save and go again to
browser, update and look.

Fortunately, browsers are fast enough and render your HTML file in milliseconds.

Second HTML document

Example above is a bit boring. How to make something more like real world Web
page?

Consider the second example:

<!DOCTYPE html>
<title>My Web page</title>

<h3 align="center">My Web page</h3>
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<p>This <em>Web page</em> is about me.<br />
This is who <strong>I</strong> am:</p>

<ul>
<li> First name
<li> Last name
</ul>

<p><a href="https://www.google.com/search?q=me">
Search me on Google</a></p>

This outputs something like:

My Web page
ThisWeb page is about me.
This is who I am:

• First name
• Last name

Search me on Google.

Step three. Fancy HTML

Even more fancy document would contain colors, tables and images. We illustrate
colors and tables here, and speak about images in next section.

This is our third document:

<!DOCTYPE html>
<title>My third Web page</title>

<p>This way to <font color="red">colorize</font>
Web content is outdated but still works.</p>

<p>Tables are good because they allow to align text:</p>

<!-- This is a comment, or disabled content -->

<table align="center" border="1">
<tr>
<td colspan="2" align="center">This is useful for:</td>
</tr>
<tr>

https://www.google.com/search?q=me
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<td>Structured output</td>
<td>Complex layouts</td>
</tr>
</table>

Save this as 3.htm and open in browser. Output should be similar to:

This way to colorize Web content is outdated but still works.
Tables are good because they allow to align text:

This is useful for:

Structured output Complex layouts

Step four. PNG and JPEG

Next step is to insert graphics. There are two ways: raster way and vector way. This
section describes the first.

In short, raster graphics is made from little “bricks”, pixels (whereas vector graphics
is made from formulas). These pixels could be generally of three kinds:

1. Black and white

2. Black, white and 254 shades of gray (yes)

3. 65536 (or more) hues of color

Suppose that we have image with size 4×4 pixels (by the way, all raster images must
be rectangles). There is 2 columns, each of 4 of black pixels and 2 columns of white
pixels. In all, our picture looks like two 2×4 rectangles side by side, black and white:

(Above is a scheme, not a real 16 pixel raster image.)

Now we need to describe this situation and make graphics file.

The simplest way is to describe it pixel by pixel, from, saying, top to bottom and left
to right. So description (and internals of our graphical file) will look like:

1111 1111 0000 0000
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where white pixel is encoded with 1, black pixel with 0, and space shows end of col-
umn. This waymakes text file which size is 19 symbols. Now, your photographmade
with phone contains 20, 000, 000 pixels! How big will be graphic files? How fast is
to read it?

So to save time and space, raster files must be compressed. One way of compression
is easy to show:

14 14 04 04

Now we have 11 symbols and still retain the same information! Did you get it? First
number encodes color of pixel, second number shows how many times to repeat,
space is the same. This is a variant of run-length encoding (RLE) which despite of
simplicity, is still around. Think about how to pack this even more.

Well, if there are 65536 colors, then it is not so easy to use RLE, we need something
more complicated. In essence, there are two ways:

1. Lossless

2. Lossy

Lossless is, for example, RLE way described above. Many of lossless methods based
on some efficient compression, and compression based on pattern discovery (like
in our example above). This is, by the way, true not only for graphics, but also for
music, and of course video which is in essence, combination of graphics and music.

Lossy way is also easy to imagine. Suppose that in our image, among 8 white pixels,
there are 2 pixels which are not completely white, they are very light gray:

1211 2111 0000 0000

It looks like:

(Do you see these gray squares?)

If we encode this last file with RLE variant described above, result will be like:

112112 2113 04 04

It costs us 17 symbols, almost the same as non-compressed image!
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Now lossy solution: human eye does not see well the difference between white and
“very light gray” symbols. So replace those with white, and go with 11 symbols.

So you know now the most striking difference between two most important raster
graphic formats, PNG and JPEG (JPG):

PNG JPEG

Compression Lossless Lossy

Degrades No Yes

Artifacts No Yes

Transparency Yes No

Black & white Yes No

Small photo size No Yes

Animation* No No

PNG (Portable Network Graphics) was invented for small-color, typically non-pho-
tographic images whereas JPEG (Joint Photographing Expert Group, file extension
often JPG, hence more frequent JPG name) was made exactly for what name sug-
gests, photographs, to avoid giant sizes of files. So to choose which to use, thinking
is actually required (Fig. 1).

In music, the same distinction could be made between lossy MP3 and lossless FLAC.

* About animation. When PNG was invented, it inherited many features from its
non-opensource predecessor, GIF format (and acquired many new features such as
support for thousands of colors), except one: ability to show small animations. For
some reason, it was thought that other formats (true videos, for example)will replace
GIF animations in the end. Amazingly, this did not happen, and now the outdated
GIF is still around, and the reason are animations. Your can easily make these ani-
mations yourself using freeware ImageMagick:

convert -delay 40 -loop 0 1.png 2.png animated12.gif

Onemore feature of PNG is that you almost always can re-compress it and save just a
bit more space. This is sometimes critically important for Web content. Many tools
exist which help here, for example, pngquant, optipng and leanify (the latter is more
universal and deals with many file types).



34 Markup and ebooks

Figure 1. PNG versus JPG.

Step five. SVG

Start with the following example:

<!DOCTYPE html>
<title>Title</title>
<p><img src="example.png" /></p>
<p><svg>
<rect fill="black" width="20" height="40" />
<rect fill="green" x="20" width="20" height="40" />
</svg></p>

(This example works well with newest Mozilla Firefox and Google Chrome.)

Save this file as 5.htm, download example.png from the URL http://ashipunov.
info/shipunov/school/univ_110/comp_lit_sci_maj/pics/example.pngandplace
it in the same directory as 4.htm. Now open it in the browser. Youwill see something
like:

http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/pics/example.png
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/pics/example.png
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Now start to magnify, in most browsers it is done with Ctrl++. You see something
like:

Do you see the difference?

This difference, from the user standpoint is the most important distinction between
vector and raster graphics: vector scales infinitely, raster is not.

From the standpoint of Web designer, vector (SVG, Scalable Vector Graphics) re-
quires completely different approach to create and edit. And the above example
explains why. While raster image is based on pixels, vector is something like geo-
metrical description or even formula of shape. In a world of free software, the most
appropriate program to work with SVG is Inkscape (and with raster graphics—GIMP).

When you see your vector SVG in browser, it is already converted into raster image
(rasterized) because computer and phone screens are raster devices. Reverse op-
eration (tracing) is also possible, and Inkscape or independent tool potrace (http:
//kilobtye.github.io/potrace) can trace raster images.

http://kilobtye.github.io/potrace
http://kilobtye.github.io/potrace
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SVG is a relatively new technology, and sometimes rasterized slowly. There are SVG
optimizers of which SVGOMG (https://jakearchibald.github.io/svgomg) is prob-
ably the best one.

PDF is just another vector graphics format, see below for more detailed discussion.

Step six. CSS

Next example is similar to our first HTML document, but there is one important
difference:

<!DOCTYPE html>
<style>p {text-align:center;}</style>
<title>Title</title>
<p>Hello, World!</p>
<p>Second line.</p>

Save it as 6.htm and open in browser:

Hello, World!
Second line.

Paragraphs are now centered because we declared this as a paragraph (p) style. This
is how CSS (Cascading Style Sheets) work: they tell browser to format content in
accordance with style descriptions.

Step seven. JavaScript.

Our Web examples were so far static. Below is our first DHTML, dynamic page:

<!DOCTYPE html>
<title>Who goes there?</title>
<script>
s = prompt("Who goes there?")
document.write("<p>You may pass, " + s + "</p>")
</script>

Save it as 7.htm and try in a browser.

If you studied the second part, I believe that you spotted the similarity with our sec-
ond Python program. Actually, they are the same, but written in different program-
ming languages. Current example made with JavaScript, language which is similar
to Python1. The biggest difference is that JavaScript works inWeb browsers whereas
Python is not.
1And dissimilar to programming language Java, their names similarity is almost coincidence.

https://jakearchibald.github.io/svgomg
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So JavaScript is a client side tool, and every recent browser supports it. However, if
you like Pythonmore andwant to use it to produceWeb content, this is still possible.
You need to install Python on your Web server (computer which distributes content
in accordance with hypertext protocols), and then establish communication route
between Python and HTML. This is called CGI (Common Gateway Interface). There
are even Python Web frameworks (like Django) which work almost out of the box.

JavaScript is a core of our current Internet, together with server-side programming
languages. If you know a bit of JavaScript, CSS and HTML, you understand what is
going on in you Web browser.

Symbol ebooks

These are text-based files formatted in order to print the real, physical book and/or
also to read the book from electronic device. In short, most symbol ebooks are now
of two kinds: PDF and EPUB.

PDF

PDF is the most frequently used file format for complicated electronic material,
for example, ebooks with tables, illustrations, indices etc. As a file format, PDF
is a multi-page vector file which can include multiple different objects together
with their sizes and placements: photographic raster images, vector drawings, other
PDFs, hyperlinks, and even movies and JavaScript programs. The full description of
PDF is a big volume of almost 1, 000 pages!

One of important features is that PDF must have a kind of contents table for all ob-
jects, and this is placed in the very end of file. As a result, if you download a big PDF
and did not download it in full, it typically non-readable.

The other specific feature is that freeware programs with universal ability to edit
PDF are still absent. Some users do not even know that PDF is editable. But why
not? If there are objects and placements, then user should have an option to change
them. However, while universal programs do not exist, there are multiple freeware
tools which allow user to perform diverse PDF editing operations:

Extract raster images and text Xpdf tools (pdftotext, pdfimages)

For example, if you have the file 1.pdf, you can run in the terminal:

$ pdftotext 1.pdf
$ pdfimages 1.pdf 1
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Print PDF into images This is not the same as above, printing into images does the
same thing as real printer but saves results as files. pdftoppm from Xpdf tools
will do that:

$ pdftoppm -r 300 -jpeg 1.pdf 1

Images to PDF convert from ImageMagick

For example, if you havemultiple JPEGfiles andwant tomake PDF out of them:

$ convert *.jpg 1.pdf

Delete, insert, rearrange pages, merge, split PDFs pdftk

For example, if you want to delete the second page from your PDF file:

$ pdftk 1.pdf cat 1 3-end output 2.pdf

Crop pages pdfcrop

Annotate, fill forms Okular

Edit objects LibreOffice Draw (one page only, other restrictions also apply)

EPUB

EPUB is a format more close to HTML then to PDF, and works best mostly for the fic-
tion books. It is easy enough to create, edit and convert EPUB to other formats with
free software. Most powerful ebook convertor is probably Calibre. Freeware editor
Sigil allows to create and edit EPUB ebooks with using Office-like visual interface.

Scanned ebooks

Scanned ebooks are made from images. These images came either from photo-
graphic device (phone, digital camera), or from specialized scanner. There twomost
important differences from symbol ebooks: there is no text and they are of big size.

Themost simple scanned ebook is just a set of raster images, for example,multi-page
TIFF. That last format was specifically designed for scanners. However, the problem
is that big and especially color books make extremely large TIFF files.

DjVu

This format was designed in AT&T exactly for scanned books. Idea of DjVu is seg-
mentation: image split in multiple fragments (text separate, background separate,
illustrations separate) and each type is compressed in a specific way. For example,
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text is compressed by splitting into individual letters. So if there are 16 letters “a”
on the page, they all encoded with one image plus information where to place it 16
times. This saves a lot of memory and space.

DjVu makes small and memory-efficient (hence DjVu books are easy to read) docu-
ments which still outperform almost any PDFs. Freeware DjView4 and many other
programs (e.g., SumatraPDF) are able to read DjVu files.
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TEX

TEX is one of the most superior software written. Famous Donald Knuth developed
TEX in order tomake his computer science books. Many years of polishing resulted in
fact that TEX is almost bug-free (the really rare phenomenon!) and extremely fast.
Whatever type of electronic text you want to make: book, handout, poster, slides,
there is a TEX recipe to it.

LATEX

There are many varietes of TEX and programs which run it. Below, we will use LATEX
variety and the pdflatex program which runs it.

My first LATEX document

LATEX is based on plain text. So if you open the text editor, enter something like

Hello, World!

save it as a file 1.tex and run with

$ pdflatex 1.tex

you will receive ... an error:

This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017)
(preloaded format=pdflatex)
restricted \write18 enabled.

entering extended mode
(./1.tex
LaTeX2e <2017-04-15>
Babel <3.14> and hyphenation patterns for 84 language(s) loaded.

! LaTeX Error: Missing \begin{document}.
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See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.
...

l.1 H
ello, World!

?

(type x to escape.)

Evidently, we forgot somemarkup. UnlikeHTML renderer, LATEX interpreter (pdflatex
in that case) is not so forgivable and “dislikes” badly made documents.

So the minimal proper document is:

\documentclass{article}
\begin{document}
Hello, World!
\end{document}

And output PDF is:

Hello, World!

Nothing fancy, but it works.

Note that like it was in HTML, you have two instances of your document: plain text
open in editor, and PDF file which is an output from pdflatex engine. So essentially
there are three windows: (1) text editor, (2) terminal where you run pdflatex and
(3) PDF reader which shows your resulted PDF.

Second LATEX document

Our second LATEX combines our second and third HTML document: font features,
lists, hyperlinks, color, tables and also one formula example (by the way, nothing
was easier because this book is made in LATEX):

\documentclass{article}
\begin{document}

\section*{My page}

This \emph{page} is about me.\\
This is who \textbf{I} am:
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\begin{itemize}
\item First name
\item Last name
\end{itemize}

\href{https://www.google.com/search?q=me}{Search me on Google.}

This way to \textcolor{red}{colorize} text works well in \LaTeX.

I like this formula most of all, because it is simple: $E=mc^2$

% This is a comment, or disabled content

Tables are good because they allow to align text:

\begin{center}

\begin{tabular}{|l|l|}\hline
\multicolumn{2}{|c|}{This is useful for:}\\\hline
Structured output & Complex layouts \\\hline
\end{tabular}

\bigskip
\includegraphics{example.png}

\end{center}

\end{document}

And output is:
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My page

This page is about me.
This is who I am:

• First name
• Last name

Search me on Google.
This way to colorize text works well in LATEX.
I like this formula most of all, because it is simple: E = mc2
Tables are good because they allow to align text:

This is useful for:

Structured output Complex layouts

LATEX ebooks

So what about ebooks? How to make them with LATEX? This question is also very
easy to answer: this ebook is made in LATEX. So to learn how to make real, big
ebooks like this one, you only need to access the source code of this book which is
openly available from this URL: http://ashipunov.info/shipunov/school/univ_
110/comp_lit_sci_maj/comp_lit_sci_maj.tex

Download it, open in text editor and look. Change it. Remove pieces. Add some-
thing. Run.

To run, you will my style file shipunov4.sty available from http://ashipunov.
info/shipunov/school/univ_110/comp_lit_sci_maj/shipunov4.sty. And images,
they available from http://ashipunov.info/shipunov/school/univ_110/comp_lit_
sci_maj/pics/

You will also need text editor (like Geany) and the TEX system itself. It is freely avail-
able (with installation instructions) from https://www.tug.org/texlive. Install
the full version.

https://www.google.com/search?q=me
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/comp_lit_sci_maj.tex
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/comp_lit_sci_maj.tex
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/shipunov4.sty
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/shipunov4.sty
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/pics/
http://ashipunov.info/shipunov/school/univ_110/comp_lit_sci_maj/pics/
https://www.tug.org/texlive
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CLI is to command

There are two choices for computer user:

1. If youwant to command your computer, use commands through command-line
interface (CLI)

2. If you want your computer to command you, use graphical user interface (GUI)

It is also said that “GUIs normally make it simple to accomplish simple actions and
impossible to accomplish complex actions”. Sounds dramatic, but in essence correct.
Command line tools give you freedom and control on your machine.

* * *

When your learn how to command your computer, remember these two (related)
advices:

Make mistakes! The more mistakes you do now, the more your learn, and less you
do in future.

Experiment! Copy-paste from this book, change code, invent your own code, try
something new, ask “what if” questions and try to answer it yourself.
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Terminals and where to find them

There is typically no problem to find terminal application, they are called Terminal,
Terminal.app (macOS: Utilities → Terminal.app) or Command Prompt (Windows: Win-
dows System→ Command Prompt).

If you start terminal for the first time, one of problems is to run it in such a way that
its current directory is directory you want. Typically, user has some kind of working
directory to run Python programs, makeWeb pages, LATEX documents and other stuff.
However, when you start terminal, it by default starts somewhere else. So the goal
is to point your terminal to the place you want.

This is possible, if you know terminal commands. Most important is cd. Open ter-
minal window, then type something like:

cd c:/Users/<myname>/Desktop/wrk

<myname> is the name of current user (likely you), and everything after cd is the loca-
tion which you declare to be your working directory. It might be helpful to open file
manager in a separate window (or “Save” window of your editor), locate this path
and then type it into the terminal.

To check if you are in the desired place (working directory), type dir (Windows) or
pwd and then ls (UNIX-like). You should see the name of your directory and names
of files which should be kept there.

If you not exactly sure where is your goal directory, type dir (or ls) and cd <dir>
sequentially, until you find the destination, and your command prompt shows the
name of working directory.

* * *

While all OSes have terminal applications, only UNIX-based (macOS and Linux) run
“true”, POSIX-compliant terminals. Thus, it is not easy to start learning terminal
commands if you work onWindows. Several workarounds exist.
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First, there are emulation tools, for example, JSLinux which runs kind of (restricted)
Linux system in your browser. There is also tools which run terminal applications
natively. One is a Cygwin, system which is designed to run POSIX terminals onWin-
dows machines. Cygwin is freeware, and should run on any kind of Windows com-
puter. Another system is DJGPP, Delorie GNU Programming Platform, which is more
lightweight. There are alsoGnuWin32,MinGW, unxutils and even the Linux subsystem
in some newer versions of Windows 10.
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UNIX Power Tools

To learn famous UNIX power tools, you must type all examples is this chapter. To
make life easier, create the directory Desktop in your home directory (it might al-
ready exist) and the directory wrk inside Desktop.

Navigate

To move between directories, you only need to know several symbols and two com-
mands.

Main command is cd (“change directory”). It is not a separate program but the part
to UNIX shell which is secretly present in all examples below.

cdwill bring you anywhere if you know the address, path. Fortunately, completion al-
lows not to remember paths but simply type Tab and look what system shows. When
you are in place, it is good to check files “around you” with command ls (“list”). In
addition, command pwd shows where you are (i.e., name of directory). However, this
name is typically shown in the prompt.

Suppose I am somewhere and want to find my working directory which name is wrk
and it is among in my user directories:

myname@mycomp:~$ cd ~ # this is to go to my home: ~
myname@mycomp:~$ ls # so what is there?
bin Desktop wrk # oh, I found Desktop!
myname@mycomp:~$ cd Desktop # go to desktop
/home/myname/Desktop
myname@mycomp:~/Desktop$ ls # what is on Desktop?
cr wrk # found it!
myname@mycomp:~/Desktop$ cd wrk
/home/myname/Desktop/wrk
myname@mycomp:~/Desktop/wrk$ pwd # again, where am I?



Files 51

/home/alexey/Desktop/wrk
myname@mycomp:~/Desktop/wrk$ ls # just in case, what is here?
1.txt

(Symbol # is a comment, everything after it ignored.)

To go up one level, use

myname@mycomp:~/Desktop/wrk$ cd ..
myname@mycomp:~/Desktop$

One dot (.) is the current directory so cd . do not move you anywhere, it is useful
in other situations.

Completion works like some replacement for ls:

myname@mycomp:~/Desktop$ cd ./ # then I typed Tab and see:
something_else/ wrk/ # two directories here
myname@mycomp:~/Desktop$ cd ./wrk/ # so I types one letter "u"

# then Tab
# and system completed
# with "niv_110/"

myname@mycomp:~/Desktop/wrk$ # and I am here!

(Forward slash / is directory separator.)

Files

To make empty (0-size) file, type

myname@mycomp:~/Desktop/wrk$ touch 1.txt
myname@mycomp:~/Desktop/wrk$ ls -l
total 0
-rw-rw-r-- 1 myname myname 0 Nov 8 22:49 1.txt

(Note ls -l which shows more details about file, including size.)

If you want to remove it (not to trash but forever!), type rm 1.txt.

To move it from local directory one level up, type:

myname@mycomp:~/Desktop/wrk$ mv 1.txt ..
myname@mycomp:~/Desktop/wrk$ ls .. # to check
1.txt something_else wrk # yes, it is there
myname@mycomp:~/Desktop/wrk$ mv ../1.txt . # move it back
myname@mycomp:~/Desktop/wrk$ ls # check again
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1.txt # yes, it is back

To copy, use something like cp 1.txt 2.txt.

By the way, many power tools are not fool proof! UNIX typically assumes that you
knowwhat you are doing. So, for example, cpwill copy one file into another if even it
exist and therefore will completely erase the previous content without any warning.

Find

It is too boring, evenwith completion, repeatedly type cd and ls. There are two tools
which help to find files and directories by name:

myname@mycomp:~$ find -name "univ*"
./Desktop/wrk
myname@mycomp:~$ locate wrk
/home/myname/Desktop/wrk

findworks in real time and search within given directory (by default, within current),
locate uses database and return the absolute path (which starts with slash). find can
also use wildcards, for example, star * which means “any number of any symbols”,
or ? which is “just one symbol”.

If you want to find files by content, read below about grep.

Directories

To make directories, use mkdir. It can make multiple directories (with the help of
shell) and the sequence of directories (directory tree) in one step:

myname@mycomp:~/Desktop/wrk$ mkdir -p one/{1, 2, 3}
myname@mycomp:~/Desktop/wrk$ find
.
./one
./one/2
./one/3
./one/1

(Here find used to list everything which is in current directory.)

Remove (empty) directory tree with rm -r:

myname@mycomp:~/Desktop/wrk$ rm -r one
myname@mycomp:~/Desktop/wrk$ find
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. # nothing is left

Non-empty directories could be removed with rm -rf command but be careful: if
you apply it without thinking, you could really harm your computer. You warned.

* * *

Utility ln allows tomake symbolic linkswhich is one of themost powerfulmechanism
related with UNIX file systems. Suppose that I have three files:

myname@mycomp:~/Desktop/wrk$ touch {1, 2, 3}.txt
myname@mycomp:~/Desktop/wrk$ ls ?.txt
1.txt 2.txt 3.txt
myname@mycomp:~/Desktop/wrk$

I want to categorize them. The most common way is to distribute them by direc-
tories. But what if I want two different systems of categories? In other words, two
views on these files? If I copy these files, then every edit, I must edit twice (or edit
once and copy afterwards).

Symbolic links will solve this problem in a most elegant way.

First, I prepare these two views:

myname@mycomp:~/Desktop/wrk$ mkdir -p by_type/{tables, texts} \
> by_content/{home, work}
myname@mycomp:~/Desktop/wrk$ find -type d
.
./by_content
./by_content/work
./by_content/home
./by_type
./by_type/texts
./by_type/tables

(Symbol \onone line and >onnext linemean that I split the line in twoparts because
it was too long for the book. If you type \ and press Enter, then symbol > on next
line appears automatically. This is because \ is escape, it protects next symbol to be
interpret as usual.)

Second, make symbolic links from each file into both places:

myname@mycomp:~/Desktop/wrk$ ln -s 1.txt by_type/texts/1.txt
myname@mycomp:~/Desktop/wrk$ ln -s 2.txt by_type/texts/2.txt
myname@mycomp:~/Desktop/wrk$ ln -s 3.txt by_type/tables/3.txt
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myname@mycomp:~/Desktop/wrk$ ln -s 1.txt by_content/work/1.txt
myname@mycomp:~/Desktop/wrk$ ln -s 2.txt by_content/home/2.txt
myname@mycomp:~/Desktop/wrk$ ln -s 3.txt by_content/home/3.txt

Finally, check the result with ls, find or (like below) tree command:

myname@mycomp:~/Desktop/wrk$ tree --charset ascii
.
|-- 1.txt
|-- 2.txt
|-- 3.txt
|-- by_content
| |-- home
| | |-- 2.txt -> 2.txt
| | `-- 3.txt -> 3.txt
| `-- work
| `-- 1.txt -> 1.txt
`-- by_type

|-- tables
| `-- 3.txt -> 3.txt
`-- texts

|-- 1.txt -> 1.txt
`-- 2.txt -> 2.txt

6 directories, 9 files

* * *

Now for the sake of learning, we break out file naming rules and copy one of our files
to the new one, new 1.txt which name contains a space:

myname@mycomp:~/Desktop/wrk$ cp 1.txt new 1.txt
cp: target '1.txt' is not a directory

Does not work! This is because space by default delimits items in the command
line. This was, by the way, the main reason to avoid space containing file names.
Of course, it is possible to make files with space in the name, it is enough to escape
space with backslash, like new\ 1.txt. However, this is better to avoid.
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Help

How to knowwhat all these commands do? Read this book, especially the cheatsheet
in the end of chapter. Or use help. Typically, there are two kinds of help:

1. Manual pages. To call, use man <program_name>, e.g., man ln. You will see
manual page in a viewer, usually less. To quit less, type q.

2. Help option. To call, use <program_name> --help (note two dashes). Short
help will output on the screen.

Pipes and other connections

In UNIX, everything is a text. Ideally, every program should output some text and
accept it as input1. If the program outputs text, you will see it on the screen:

myname@mycomp:~/Desktop$ ls
wrk

Or you can redirect it to file:

myname@mycomp:~/Desktop$ ls > 0.txt

Now use cat command to check content of 0.txt:

myname@mycomp:~/Desktop$ cat 0.txt
0.txt
wrk

Wait a minute—why is 0.txt there? This is because the shell first creates the file,
and only then performs the command. So at the moment when ls start to run, there
were two items, wrk and 0.txt.

If file already exists, its content will be erased and replaced with output. However,
you can add output to the end of file:

myname@mycomp:~/Desktop$ echo "3" >> 0.txt
myname@mycomp:~/Desktop$ cat 0.txt
0.txt
wrk
3

(Command echo simply outputs its argument.)

Redirection symbol > can be used to empty the file:
1Even clipboard, through xclip utility.
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myname@mycomp:~/Desktop$ > 0.txt
myname@mycomp:~/Desktop$ cat 0.txt

You can redirect output of one command into input of another. This is a pipe:

myname@mycomp:~/Desktop$ ls | cat
0.txt
wrk

(Almost useless example because ls will output text anyway, but you got the idea.)

* * *

Redirections and pipes are not only ways to connect two programs.

For example, I can simply concatenate two commands with semicolon:

myname@mycomp:~/Desktop$ ls ; echo "1"
0.txt
wrk
1

(In that case, two commands are fully independent. I placed them together for con-
venience.)

The other way is to connect programs in such a way that if the first one failed, second
one will not run:

myname@mycomp:~/Desktop$ cat 1 && ls
cat: 1: No such file or directory

Since there is no file with name 1, cat induced the error, and ls did not run.

* * *

Overall, the basic idea of all these combinations of programs is that each program
does one small thing (but does it well), and to make a big thing, we must combine
programs together with redirection, pipe, && or even semicolon.

Text

We already know catwhich outputs content of any file, and lesswhich shows content
in a separate viewer instance.
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By the way, cat (together with UNIX shell) can be regarded as simplest text editor:

myname@mycomp:~/Desktop/wrk$ cat > new.txt
ATGGTTCCA # now, type something

# new line is Enter
# when done, press Ctrl+D

myname@mycomp:~/Desktop/wrk$ cat new.txt
ATGGTTCCA

(Ctrl+D is an “end of input” symbol.)

Utility tail is similar to cat but outputs the very end of file (typically, very long file like
log-files of servers), it even can update the output on regular intervals (with option
tail -f) and therefore show how the file grows.

Useful wc counts symbols and lines in the file:

myname@mycomp:~/Desktop$ wc -l 0.txt
3 0.txt

(So far, 3 lines in 0.txt.)

* * *

But the UNIX star is grep, utility to search files by content:

myname@mycomp:~/Desktop/wrk$ echo "1" > 1.txt
myname@mycomp:~/Desktop/wrk$ echo "2" > 2.txt
myname@mycomp:~/Desktop/wrk$ cat *txt > 3.txt
myname@mycomp:~/Desktop/wrk$ grep 1 *txt
1.txt:1
3.txt:1

Naturally, symbol “1” presents only in 1.txt and 3.txt, each time in first row.

Utilities sort and uniq also belong to the those tools which select something from
file. sort sorts (what else can it do?), and uniq removes duplicates, typically from
already sorted text:

myname@mycomp:~/Desktop/wrk$ cat > 4.txt
one
two
three
one
myname@mycomp:~/Desktop/wrk$ sort 4.txt | uniq
one
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three
two

fmt re-format paragraphs (chunks of text separated with empty line) in accordance
with some given length (default is 75):

myname@mycomp:~/Desktop/wrk$ fmt 4.txt
one two three one

Finally, diff and comm are really useful when you want to find differences. diff is
better for texts and log-files, comm is better for sorted lists and tables:

myname@mycomp:~/Desktop/wrk$ diff 1.txt 3.txt
1a2
> 2

So 3.txt differs from 1.txt in symbol ”2” on the added second row.

comm produces three-column output. Third column are rows common between two
files, first column—unique to first file, second column—to second file:

myname@mycomp:~/Desktop/wrk$ comm 1.txt 3.txt
1

2

(There is nothing unique to 1.txt so first column did not appear.)

Regexp

Regexp is a shortcut for “regular expressions” which is a way to generalize text edit-
ing. Suppose that we have a long text where all numeric intervals are shown as hy-
phens, like:

myname@mycomp:~/Desktop/wrk$ cat > 5.txt
one
32-34
brown-violet
2.1-15
T-shirt
150-150.5

But I want them to be en-dashes, which are lines longer then hyphens. In plain text,
en-dashes are typically shown as double hyphens. So I want something like:

one
32--34
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brown-violet
2.1--15
T-shirt
150--150.5

One way is to search each hyphen and, if it is surrounded with digits, replace it with
double hyphen. Regular expressions allow to do it automatically:

myname@mycomp:~/Desktop/wrk$cat 5.txt | \
> sed "s/\([0-9]\)-\([0-9]\)/\1--\2/g"
one
32--34
brown-violet
2.1--15
T-shirt
150--150.5

(Symbols \ and > used because line was too long, see above.)

A bit frightening, is it? Complicated syntax is a main complain about regexps. But
this one is easy to explain:

sed is stream editor, command editor which changes any input

"s/.../.../g"means search and replace globally, so if theremultiple replace-
ments on one line, all will be replaced

[0-9] is any digit from 0 to 9

\(...\) save this in memory to use in replacement part

- this is hyphen to replace with double hyphens

\1 and \2 first and second memorized object (which appeared in \(...\))

Our regular expression does exactly what you would do if you replace manually, but
it is way faster and do not skip entries.

sed is extremely powerful and allows to change files of giant size in seconds. Related
task is to renamemultiple files. There are many utilities but one of most widespread
is rename:

myname@mycomp:~/Desktop/wrk$ rename -n 's/([0-9])/file$1/g' *txt
rename(1.txt, file1.txt)
rename(2.txt, file2.txt)
rename(3.txt, file3.txt)
rename(4.txt, file4.txt)
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rename(5.txt, file5.txt)

(Option -n shows how files would be renamed. If you agree with proposed changes,
remove -n.)

It is a bit inconsistent with sed regexps because it uses slightly different rules (so-
called Perl regexps: $1 instead of \1, ( instead of \() but principle is the same.

Connect

Terminal can do all network-related things, including Web browsing (there is, for
example, links2 text browser). I think that for beginners, most important network-
related tools are:

ifconfig shows your current IP address (or addresses).

ssh secure shell: allows to run commands on remote computer securely.

wget offline browser, allows to download Web pages and whole Web sites.

For example, this command will download the Google title page:

myname@mycomp:~/Desktop/wrk$ wget google.com

rsync synchronization tool, allows for backups and cloud-like services.

rsync can also synchronize local directories, and typically does it faster than
any other program:

myname@mycomp:~/Desktop/wrk$ rsync -a directory1 directory2

Script

Shell was “secretly” present in all examples above. First, shell controls wildcards
which expand when you want short descriptions of file names:

myname@mycomp:~/Desktop/wrk$ ls *txt
1.txt 2.txt 3.txt 4.txt 5.txt new.txt
myname@mycomp:~/Desktop/wrk$ ls ?.txt
1.txt 2.txt 3.txt 4.txt 5.txt
myname@mycomp:~/Desktop/wrk$ ls [1-3].txt
1.txt 2.txt 3.txt

Shell controls redirection: input, output and pipes.

Shell also controls prompt which in out examples was:
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myname@mycomp:<current_dir>$

* * *

Shell can domuchmore. For example, shell scripts. When you repeat your command
over and over again, you might want to save your typing and invent some kind of
program which will do work for you.

Say, we want a typical (see below) “Hello, World!” program. If we want shell to show
us something, we use echo:

myname@mycomp:~/Desktop/wrk$ echo "Hello, World!"
Hello, World!

Now, some little magic and we will have hello.sh script:

myname@mycomp:~/Desktop/wrk$ cat > hello.sh
#!/bin/bash
echo "Hello, World!" # do not forget Ctrl+D in the end
myname@mycomp:~/Desktop/wrk$ . ./hello.sh
Hello, World!

(Dot . is the run command, and next to it are ./ which means that script is in current
directory.)|

Our first shell script contains two lines. Second we already tried manually. First is
shebang line which tells system that I need bash (“Bourne-again” shell) to run my
script. In case of hello.sh, shebang is not so necessary.

hello.sh is not very useful, but if you want something complicated, for example,
change multiple files, script is the most practical way.

Say, for example, that we want to backup text files, copy each of them to new file,
keep the name but change extension to *.bak. Then we need the following script:

myname@mycomp:~/Desktop/wrk$ cat > bak.sh
#!/bin/bash
for file in *txt
do
name="${file%.*}"
cp $name.txt $name.bak
done
myname@mycomp:~/Desktop/wrk$ . ./bak.sh # run it
myname@mycomp:~/Desktop/wrk$ ls # check result
1.bak 1.txt 2.bak 2.txt 3.bak 3.txt
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4.bak 4.txt 5.bak 5.txt bak.sh
hello.sh new.bak new.txt

* * *

The rule of thumb says that if you need to repeat anything more then 10 times, it is
better tomake a scriptwhichwill do thiswork for you. Of course, youwill spend some
time to make this script work, plus some time to check if it works without problems.
But it will still be faster than repeating the same set of operations multiple times.

Imagine that I changed my email address. This happens. Many files which I work
with contain the old email, so I need to change it into the new one. My set of oper-
ations is therefore: find file, find old email, remove it, type in new email. save file.
What if there are dozens of them?

This is the short script which solves the problem:

myname@mycomp:~/Desktop/wrk$ sed -i 's/old@email/new@email/g' \
> `find -type f -name '*txt'`

That’s it. This small program will do the job!

Some explanations: sed -i changes files in place, like normal text editor, backtiks
`` are not quotes but kind of command which directs result into another command,
command find searches for all text files in all subdirectories.

UNIX Power Tools cheatsheet

List below might helpful in order to find which utility to use. To know how to use,
run man and/or --help option. Some utilities were not explained above in details,
hence the short comment2.

Input and output

bash UNIX shell

cat output file

echo output text

tail show last lines

Files and directories

cd change directory

cp copy

ln make link

ls list files

mc file manager

mkdir make directory
2And if you want to read more about “UNIX power tools”, the best book has the same exact name.
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mv move files

pwd working directory

rm delete files

touch create file

tree directory tree

Modify text

nano text editor

ne another text editor

sed replace text

sort sort text

uniq unique lines

Compare

diff difference between files

comm common lines in files

Search

find find files

grep find text

locate find files fast

Net

curl fetch Web pages

ifconfig IP and others

ssh secure shell

wget download

Permissions

chmod change access mode

chown change owner

Info

cal calendar

du disk space usage

date date and time

less show file: / find, n next, q quit

history command history

wc count lines etc.

Processes

kill control process

ps show processes

top show processes in table

Backup

gzip compress

rsync synchronize

tar make archive

Utilities

convert ImageMagick

leanify image optimizer

pdfimages extract images from PDF

pdftk PDF toolkit

pdflatex run LATEX
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Intro to Python

The goal of this part is to teach how to command your computer, which is essentially
how to program.

One of the best programmer’s learning tools is the Python programming language
because it is a rare combination of being easy useful from first steps.

Some of the following chapters are modified from the open source Python book,
“Non-Programmer’s Tutorial for Python”whichwas initially the text of Josh Cogliati
and then extended by multiple co-authors and now is hosting on Wikipedia (https:
//en.wikibooks.org/wiki/Non-Programmer's_Tutorial_for_Python_2.6).

First things first

So, you’ve never programmed before. As we go through this tutorial I will attempt
to teach you how to program. There really is only one way to learn to program. You
must read code and write code. I’m going to show you lots of code. You should
type in code that I show you to see what happens. Play around with it and make
changes. The worst that can happen is that it won’t work. When I type in code it will
be formatted like this:

1 print "Hello, World!"

That’s so it is easy to distinguish from the other text. I will also print what the com-
puter outputs in that same font.

Installing Python

Now, on to more important things. In order to program in Python you need the
Python software.

https://en.wikibooks.org/wiki/Non-Programmer's_Tutorial_for_Python_2.6
https://en.wikibooks.org/wiki/Non-Programmer's_Tutorial_for_Python_2.6
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If you work on Windows, go to http://www.python.org and get the proper version
for your OS. Download it, read the instructions and get it installed. Important oper-
ation is to add Python executable to the search path. Fortunately, the recent installer
program will do it for you if during the installation, you choose “Add python.exe to
Path, ” and then select “Will be installed on local hard drive”. Sometimes, you need
to restart your computer after installation.

If youwork on Linux, Python ismost likely already installed on your computer. Latest
macOS versions also have pre-installed Python.

2 or 3?

This is the long story, but two most recent versions of Python are simultaneously
available, one starts with “2”, and the other with “3”. I will need you to download,
install and use 2-version (for example, Python 2.7.12, or Python 2.7.14, whatever
2-version is most recent).

Interactive Mode

First, you should run the terminal.

Second, terminal should run in the directory where you want to keep your Python
programs. If you do not know how to run terminal application in given directory, see
the above for details.

Next, in the terminal window, type python. You should see some text like this:

Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> is Python way of telling you that you are in interactive mode. In interactive
mode what you type is immediately run. Try typing 1+1 in. Python will respond with
2. Interactive mode allows you to test out and see what Python will do. If you ever
feel you need to play with new Python statements go into interactive mode and try
them out.

Toquit interactivemode, type quit(), or (onUNIX-like) Ctrl+D, or (Windows) Ctrl+Z
and Enter.

http://www.python.org
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Python in Web Browser

If you cannot, do not want or do not have time to install Python on your com-
puter, use online emulator based on Skulpt, for example, http://ashipunov.info/
shipunov/school/univ_110/python.htm. However, it is a poor man’s solution since
there aremultiple restrictions, andmost important is the inability to work with files.

http://ashipunov.info/shipunov/school/univ_110/python.htm
http://ashipunov.info/shipunov/school/univ_110/python.htm
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Hello, World!

The main way to use Python is not interactive, and not with emulator. It is to create
and run programs.

Creating and Running your First Program

Programming tutorials since the beginning of time have started with a little program
called “Hello, World!” So here it is:

1 print "Hello, World!"

Open text editor and type the following:

print "Hello, World!"

First save the program. Go to File then Save. Save it in your dowking directory1 as
hello.py. Now that it is saved it can be run.

Next run the program by typing in terminal2:

$ python hello.py

This will output

Hello, World!

Your first program is done!
1It is where you keep all your Python programs.
2Before that, do not forget to point your terminal to the working directory. Use ls/dir and cd com-
mands. Then with the same ls or dir check if your hello.py is actually there. Instead of terminal,
you can open Python browser emulator, copy-paste your code and click “Run”.
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And you also learned the important principle: edit in one place, run in another. Edit
your program in text editor (like Geany), save it, and run it in the terminal3.

If you do not like result, or want to improve it, go back to editor window, change your
program, save it, then go to terminal and run python again.

Printing

Now I’m not going to tell you this every time, but when I show you a program I
recommend that you type (or copy-paste) it in and run it. I learn better when I type
it in and you probably do too.

Now here is a more complicated program:

1 print "Jack and Jill went up a hill"
2 print "to fetch a pail of water;"
3 print "Jack fell down, and broke his crown, "
4 print "and Jill came tumbling after."

When you run this program it prints out:

Jack and Jill went up a hill
to fetch a pail of water;
Jack fell down, and broke his crown,
and Jill came tumbling after.

Save it in working directory as jack.py, and run. When the computer runs this pro-
gram it first sees the line:

print "Jack and Jill went up a hill"

so the computer prints:

Jack and Jill went up a hill

Then the computer goes down to the next line and sees:

print "to fetch a pail of water;"

So the computer prints to the screen:

to fetch a pail of water;
3Geany for macOS and Linux has terminal embedded; also, on all systems Geany is able to run your
current file with Runmenu.
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The computer keeps looking at each line, follows the command and then goes on to
the next line. The computer keeps running commands until it reaches the end of the
program.

Quotes

Now you understand that double quote is a sign to tell Python that everything next
to it is a text. Until another double quote.

Remember two mottoes? Experiment! What if there is a single quote?

Modify jack.py:

1 print "Jack and Jill went up a hill"
2 print "to fetch a pail of water;"
3 print "Jack fell down, and broke his crown, "
4 print "and Jill came tumbling after.'

(There is only one difference. Find it.)

Save and run:

$ python jack.py
File "jack.py", line 4

print "and Jill came tumbling after.'
^

SyntaxError: EOL while scanning string literal

Mistake. Do not worry! Remember—do as many mistakes as possible! So what is
wrong? Modify again:

1 print "Jack and Jill went up a hill"
2 print "to fetch a pail of water;"
3 print "Jack fell down, and broke his crown, "
4 print 'and Jill came tumbling after.'

Save and run:

$ python jack.py
Jack and Jill went up a hill
to fetch a pail of water;
Jack fell down, and broke his crown,
and Jill came tumbling after.
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Everything is fine again! So, Python does not mind which quote to use. But quotes
must be paired. This is made to allow double and single quotes to be used as single
symbols:

1 print "Jack and Jill went up a hill"
2 print 'to fetch a 10" pail of water;'
3 print "Jack fell down, and broke Jack's crown, "
4 print 'and Jill \'came\' tumbling after.'

Output:

$ python jack.py
Jack and Jill went up a hill
to fetch a 10" pail of water;
Jack fell down, and broke Jack's crown,
and Jill 'came' tumbling after.

(So if pairing does not work, one can use backslashes to “escape”, or protect, quotes.)

Some mistakes and many experiments—and you know now how quotes work.

Expressions

Here is another program:

1 print "2 + 2 is", 2+2
2 print "3 * 4 is", 3 * 4
3 print 100 - 1, " = 100 - 1"
4 print "(33 + 2) / 5 + 11.5 = ", (33 + 2) / 5 + 11.5

Save it as expr.py. And here is the output when the program is run:

2 + 2 is 4
3 * 4 is 12
99 = 100 - 1
(33 + 2) / 5 + 11.5 = 18.5

(So quotes protect expressions from being evaluated.)

As you can see, Python can turn your thousand dollar computer into a 5 dollar cal-
culator.

Python has six basic operations for numbers:
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Operation Symbol Example

Exponentiation ** 5 ** 2 == 25

Multiplication * 2 * 3 == 6

Division / 14 / 3 == 4

Remainder % 14 % 3 == 2

Addition + 1 + 2 == 3

Subtraction - 4 - 3 == 1

Notice that division follows the rule, if there are no decimals to start with, there will
be no decimals to end with. The following dec.py program shows this:

1 print "14 / 3 = ", 14 / 3
2 print "14 % 3 = ", 14 % 3
3 print
4 print "14.0 / 3.0 =", 14.0 / 3.0
5 print "14.0 % 3.0 =", 14 % 3.0

With the output:

14 / 3 = 4
14 % 3 = 2

14.0 / 3.0 = 4.66666666667
14.0 % 3.0 = 2.0

(Why there is a middle empty line?)

Notice howPython gives different answers for some problems depending onwhether
or not there decimal values are used.

The order of operations is the same as in math:

1. parentheses ()

2. exponents **

3. multiplication *, division \, and remainder %

4. addition + and subtraction -
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Talking to humans (and other intelligent beings)

Often in programming you are doing something complicated and may not in the
future remember what you did. When this happens the program should probably be
commented. A comment is a note to you and other programmers explaining what is
happening. For example:

1 # Not quite Pi but close enough
2 print 22.0/7
3 # 355.0/113 is even closer to Pi

(What will print this program?)

Notice that the comment starts with a #. Comments are used to communicate with
others who read the program and your future self to make clear what is complicated.

Examples

Each chapter (eventually) will contain examples of the programming features intro-
duced in the chapter. You should at least look over them see if you understand them.
If you don’t, youmay want to type them in and see what happens. Mess around them,
change them and see what happens.

* * *

1 print "Something's rotten in the state of Denmark."
2 print " -- Shakespeare"

Output:

Something's rotten in the state of Denmark.
-- Shakespeare

* * *

1 # This is not quite true outside of USA
2 # and is based on dim memories of my younger years
3 print "First Grade"
4 print "1+1 =", 1+1
5 print "2+4 =", 2+4
6 print "5-2 =", 5-2
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7 print
8 print "Third Grade"
9 print "243-23 =", 243-23
10 print "12*4 =", 12*4
11 print "12/3 =", 12/3
12 print "13/3 =", 13/3, " R ", 13%3
13 print
14 print "Junior High"
15 print "123.56-62.12 =", 123.56-62.12
16 print "(4+3)*2 =", (4+3)*2
17 print "4+3*2 =", 4+3*2
18 print "3**2 =", 3**2
19 print

Output:

First Grade
1+1 = 2
2+4 = 6
5-2 = 3

Third Grade
243-23 = 220
12*4 = 48
12/3 = 4
13/3 = 4 R 1

Junior High
123.56-62.12 = 61.44
(4+3)*2 = 14
4+3*2 = 10
3**2 = 9

Exercises

Write a program that prints your last name, your first name and your birthday as
separate strings.

Write a program that shows the use of all 6 math functions, in order of operations.
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Who Goes There?

Input and Variables

Now I feel it is time for a really complicated program. Here it is:

1 print "Halt!"
2 s = raw_input("Who goes there? ")
3 print "You may pass, ", s

(Why did we insert trailing space into the question above?)

Save it as a whogoh.py file and run. When I ran it here is whatmy screen showed:

Halt!
Who goes there? Josh
You may pass, Josh

Of course when you run the program your screen will look different because of the
raw_input statement. When you ran the program you probably noticed (you did run
the program, right?) how you had to type in your name and then press Enter. Then
the program printed out some more text and also your name. This is an example of
input. The program reaches a certain point and then waits for the user to input some
data that the program can use later.

Of course, getting information from the user would be useless if we didn’t have any-
where to put that information and this is where variables come in. In the previous
program s is a variable. Variables are like a box that can store some piece of data.
And it does not matter how to name the variable, just be consistent:

1 print "Halt!"
2 randomname = raw_input("Who goes there? ")
3 print "You may pass, ", randomname
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Name of variable is different, but program works exactly the same way.

Here is another program to show examples of variables:

1 a = 123.4
2 b23 = 'Spam'
3 first_name = "Bill"
4 b = 432
5 c = a + b
6 print "a + b is", c
7 print "first_name is", first_name
8 print "Sorted Parts, After Midnight or", b23

And here is the output:

a + b is 555.4
first_name is Bill
Sorted Parts, After Midnight or Spam

The variables in the above program are: a, b23, first_name, b, and c.

Variables store data. Two basic types are strings and numbers.

Note the difference between strings and variable names. Strings are marked with
quotation marks, which tells the computer don’t try to understand, just take this text
as it is:

print "first_name"

This would print the text:

first_name

Variable names are written without any quotation marks and instruct the computer
use the value I’ve previously stored under this name:

print first_name

which would print:

Bill
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Assignment

Okay, so we have these boxes called variables and also data that can go into the
variable. The computer will see a line like first_name = "Bill" and it reads it as
put the string Bill into the box (or variable) first_name.
Later on it sees the statement c = a + b and it reads it as put a + b or 123.4 + 432
or 555.4 into c.
The right hand side of the statement (a + b) is evaluated and the result is stored in
the variable on the left hand side (c). This is called assignment, and you should not
confuse the assignment equal sign (=) with “equality” in a mathematical sense here
(that’s what == will be used for later).

Here is another example of variable usage:

1 a = 1
2 print a
3 a = a + 1
4 print a
5 a = a * 2
6 print a

And of course here is the output:

1
2
4

Even if it is the same variable on both sides the computer still reads it as: First find
out the data to store and than find out where the data goes.

One more program before I end this chapter:

1 number = input("Type in a number: ")
2 str = raw_input("Type in a string: ")
3 print "number =", number
4 print "number is a ", type(number)
5 print "number * 2 =", number*2
6 print "string =", str
7 print "string is a ", type(str)
8 print "string * 2 =", str*2

The output I got was:
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Type in a number: 12.34
Type in a string: Hello
number = 12.34
number is a <type 'float'>
number * 2 = 24.68
string = Hello
string is a <type 'string'>
string * 2 = HelloHello

Notice that num was gotten with input while str was gotten with raw_input.

raw_input returns a string while input returns a number. When you want the user
to type in a number use input1 but if you want the user to type in a string use
raw_input.

The second half of the programuses typewhich tells what a variable is. Numbers are
of type int or float (which are short for ’integer’ and ’floating point’ respectively).
Strings are of type string. Integers and floats can be worked on by mathematical
functions, strings cannot. Notice how when Python multiples a number by a integer
the expected thing happens. However, when a string is multiplied by a integer the
string has that many copies of it added i.e. str * 2 = HelloHello.

The operations with strings do slightly different things than operations with num-
bers. Here are some interactive mode examples to show that some more:

>>> "This"+" "+"is"+" joined."
'This is joined.'
>>> "Ha, "*5
'Ha, Ha, Ha, Ha, Ha, '
>>> "Ha, "*5+"ha!"
'Ha, Ha, Ha, Ha, Ha, ha!'

Here is the list of some string operations:

Operation Symbol Example

Repetition * "i"*5 == "iiiii"

Concatenation + "Hello, "+"World!" == "Hello, World!"

1Only use input() when you trust your users! Everything entered into input() dialog is evaluated as
a Python expression and thus allows the user to take control of your program. So better is to get a
string and convert it to the necessary type like int(raw_input()) or float(raw_input()).
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Examples

So far, our programs were good only to learn Python. Now time came tomake some-
thing useful. This program calculates rate and distance problems:

1 print "Input a rate and a distance"
2 rate = input("Rate:")
3 distance = input("Distance:")
4 print "Time:", distance / rate

Sample runs:

$ python rate_times.py
Input a rate and a distance
Rate:5
Distance:10
Time: 2
$ python rate_times.py
Input a rate and a distance
Rate:3.52
Distance:45.6
Time: 12.9545454545

* * *

This program calculates the perimeter and area of a rectangle:

1 print "Calculate information about a rectangle"
2 length = input("Length:")
3 width = input("Width:")
4 print "Area", length*width
5 print "Perimeter", 2*length+2*width

Sample runs:

$ python area.py
Calculate information about a rectangle
Length:4
Width:3
Area 12
Perimeter 14
$ python area.py
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Calculate information about a rectangle
Length:2.53
Width:5.2
Area 13.156
Perimeter 15.46

(Why there is no space printed after colon?)

* * *

Converts Fahrenheit to Celsius:

1 temp = float(raw_input("Fahrenheit temperature: "))
2 print (temp-32.0)*5.0/9.0

(Why did we use float(raw_input()) instead of input()?)

Sample runs:

$ python temperature.py
Fahrenheit temperature: 32
0.0
$ python temperature.py
Fahrenheit temperature: -40
-40.0
$ python temperature.py
Fahrenheit temperature: 212
100.0
$ python temperature.py
Fahrenheit temperature: 98.6
37.0

Exercises

Write a program that gets 2 string variables and 2 integer variables from the user,
concatenates (joins them together with no spaces) and displays the strings, then
divides the two numbers on a new line.

Write a program that gets 1 string variable and 1 integer variable from the user, and
then outputs this string as many times as is the value of integer variable.
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Count to 10

While loops

Presenting our first flow control structure. Ordinarily the computer starts with the
first line and then goes down from there. Control structures change the order that
statements are executed or decide if a certain statement will be run. Here’s the
source for a program that uses the while control structure:

1 a = 0
2 while a < 10:
3 a = a + 1
4 print a

And here is the extremely exciting output:

1
2
3
4
5
6
7
8
9
10

(And you thought it couldn’t get any worse after turning your computer into a five
dollar calculator?)

So what does the program do? First it sees the line a = 0 and makes a zero. Then it
sees while a < 10: and so the computer checks to see if a < 10. The first time the
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computer sees this statement a is zero so it is less than 10. In other words while a is
less than ten the computer will run the tabbed in statements.

Here is another example of the use of while:

1 a = 1
2 s = 0
3 print 'Enter numbers to add to the sum.'
4 print 'Enter 0 to quit.'
5 while a != 0 :
6 print 'Current sum:', s
7 a = input('Number? ')
8 s = s + a
9 print 'Total Sum =', s

The first time I ran this program Python printed out:

File "sum.py", line 3
while a != 0

^
SyntaxError: invalid syntax

I had forgotten to put the : after the while. The error message complained about
that problem and pointed out where it thought the problem was with the ^ . After
the problem was fixed here was what I did with the program:

Enter numbers to add to the sum.
Enter 0 to quit.
Current sum: 0
Number? 200
Current sum: 200
Number? -15.25
Current sum: 184.75
Number? -151.85
Current sum: 32.9
Number? 10.00
Current sum: 42.9
Number? 0
Total sum = 42.9

Notice how print 'Total Sum =', s is only run at the end. The while statement
only affects the line that are indented. The != means does not equal so while a !=
0 : means: “until a is zero, cyclically run the tabbed statements that follow.”
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Now that we have while loops, it is possible to have programs that run forever. An
easy way to do this is to write a program like this (don’t run it until you fully un-
derstand it!):

1 while 1 == 1:
2 print "Help, I'm stuck in a loop."

This program will output

Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
Help, I'm stuck in a loop.
...

until the heat death of the universe or until you stop it. The way to stop it is to hit
the “Control” (or “Ctrl”) button and “c” (the letter) at the same time. This will kill
the program. (Note: sometimes you will have to hit enter after the Ctrl+C.)

Examples

1 # This program calculates the Fibonacci sequence
2 a = 0
3 b = 1
4 count = 0
5 max_count = 20
6 while count < max_count:
7 count = count + 1
8 # we need to keep track of a since we change it
9 old_a = a
10 old_b = b
11 a = old_b
12 b = old_a + old_b
13 # Notice that the ", " at the end of a print statement keeps it
14 # from switching to a new line
15 print old_a,
16 print
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Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

(Why are all these numbers on one line?)

* * *

1 # Waits until a password has been entered.
2 # Use Ctrl+C to break out without the password.
3

4 # Note that following must not be the password
5 # to run loop at least once.
6 password = ""
7

8 # Note that != means not equal
9 while password != "unicorn":
10 password = raw_input("Password: ")
11 print "Welcome in"

Sample run:

Password: auo
Password: y22
Password: password
Password: open sesame
Password: unicorn
Welcome in

Exercises

Write a program that prints first 10 powers of two.

Write a program that asks the user for a user name and password.
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Decisions

If statement

As always, I believe I should start each chapter with a warm up typing exercise so
here is a short program to compute the absolute value of a number:

1 n = int(raw_input("Type a number: "))
2 if n < 0:
3 print "The absolute value of", n, "is", -n
4 else:
5 print "The absolute value of", n, "is", n

Here is the output from the two times that I ran this program:

Number? -14
The absolute value of -14 is 14

Number? 24
The absolute value of 24 is 24

So what does the computer do when when it sees this piece of code? First it prompts
the user for a number with the statement n = input("Number? "). Next it reads
the line if n < 0: If n is less than zero Python runs the line print "The absolute
value of", n, "is", -n. Otherwise python runs the line print "The absolute
value of", n, "is", n.

More formally Python looks at whether the expression n < 0 is true or false. A if
statement is followed by a block of statements that are run when the expression is
true. Optionally after the if statement is a else statement. The else statement is
run if the expression is false.

There are several different tests that a expression can have. Here is a table of all of
them:
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operator function

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal

!= not equal

<> another way to say not equal

Another feature of the if command is the elif statement. It stands for “else if”
and means if the original if statement is false and then the elif part is true do that
part. Here’s a example:

1 a = 0
2 while a < 10:
3 a = a + 1
4 if a > 5:
5 print a, " > ", 5
6 elif a <= 7:
7 print a, " <= ", 7
8 else:
9 print "Neither test was true"

and the output:

1 <= 7
2 <= 7
3 <= 7
4 <= 7
5 <= 7
6 > 5
7 > 5
8 > 5
9 > 5
10 > 5

Notice how the elif a <= 7 is only tested when the if statement fail to be true.
elif allows multiple tests to be done in a single if statement.
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Examples

1 # This program shows the use of the == operator
2 # Using numbers
3 print 5 == 6
4 # Using variables
5 x = 5
6 y = 8
7 print x == y

And the output

False
False

* * *

1 # Plays the guessing game higher or lower
2 number = 78
3 guess = 0
4

5 while guess != number :
6 guess = input ("Guess a number: ")
7

8 if guess > number :
9 print "Too high"
10

11 elif guess < number :
12 print "Too low"
13

14 print "Just right"

Sample run:

Guess a number:100
Too high
Guess a number:50
Too low
Guess a number:75
Too low
Guess a number:87
Too high
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Guess a number:81
Too high
Guess a number:78
Just right

* * *

1 # Asks for a number
2 # Prints if it is even or odd
3

4 number = input("Tell me a number: ")
5 if number % 2 == 0:
6 print number, "is even."
7 elif number % 2 == 1:
8 print number, "is odd."
9 else:
10 print number, "is very strange."

Sample runs:

Tell me a number: 3
3 is odd.

Tell me a number: 2
2 is even.

Tell me a number: 3.14159
3.14159 is very strange.

* * *

1 # Keeps asking for numbers until 0 is entered.
2 # Prints the average value.
3

4 count = 0
5 sum = 0.0
6 number = 1 # set this to something that will not exit
7 # the while loop immediatly.
8

9 print "Enter 0 to exit the loop"
10



Examples 89

11 while number != 0:
12 number = input("Enter a number:")
13 count = count + 1
14 sum = sum + number
15

16 count = count - 1 #take off one for the last number
17 print "The average was:", sum/count

Sample runs:

Enter 0 to exit the loop
Enter a number:3
Enter a number:5
Enter a number:0
The average was: 4.0

Enter 0 to exit the loop
Enter a number:1
Enter a number:4
Enter a number:3
Enter a number:0
The average was: 2.66666666667

* * *

1 # Keeps asking for numbers until count have been entered.
2 # Prints the average value.
3

4 sum = 0.0
5

6 print "This program will take several numbers than average them"
7 count = input("How many numbers would you like to sum:")
8 current_count = 0
9

10 while current_count < count:
11 current_count = current_count + 1
12 print "Number ", current_count
13 number = input("Enter a number:")
14 sum = sum + number
15

16 print "The average was:", sum/count
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Sample runs:

This program will take several numbers than average them
How many numbers would you like to sum:2
Number 1
Enter a number:3
Number 2
Enter a number:5
The average was: 4.0

This program will take several numbers than average them
How many numbers would you like to sum:3
Number 1
Enter a number:1
Number 2
Enter a number:4
Number 3
Enter a number:3
The average was: 2.66666666667

Exercises

Modify the password guessing program to keep track of howmany times the user has
entered the password wrong. If it is more than 3 times, print “That must have been
complicated.”

Write a program that asks for two numbers. If the sum of the numbers is greater than
100, print “That is big number”.

Write a program that asks the user their name, if they enter your name say “That is
a nice name”, if they enter “John Cleese” or “Michael Palin”, tell them how you feel
about them ;), otherwise tell them “You have a nice name”.
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Debugging

What is debugging?
As soon as we started programming, we found to our surprise that

it wasn’t as easy to get programs right as we had thought. Debugging
had to be discovered. I can remember the exact instant when I realized
that a large part of my life from then on was going to be spent in finding
mistakes in my own programs.

Maurice Wilkes discovers debugging, 1949

By now if you have beenmessing around with the programs you have probably found
that sometimes the program does something you didn’t want it to do. This is fairly
common. Debugging is the process of figuring out what the computer is doing and
then getting it to do what you want it to do. This can be tricky. I once spent nearly a
week tracking down and fixing a bug that was caused by someone putting an xwhere
a y should have been.

This chapter will be more abstract than previous chapters. Please tell me if it is
useful.

What should the program do?

The first thing to do (this sounds obvious) is to figure outwhat the program should be
doing if it is running correctly. Come up with some test cases and see what happens.
For example, let’s say I have a program to compute the perimeter of a rectangle (the
sum of the length of all the edges). I have the following test cases:
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width height perimeter

3 4 14

2 3 10

4 4 16

2 2 8

5 1 12

I now run my program on all of the test cases and see if the program does what I
expect it to do. If it doesn’t then I need to find out what the computer is doing.

More commonly some of the test cases will work and somewill not. If that is the case
you should try and figure out what the working ones have in common. For example
here is the output for a perimeter program (you get to see the code in a minute):

Height: 3
Width: 4
perimeter = 15

Height: 2
Width: 3
perimeter = 11

Height: 4
Width: 4
perimeter = 16

Height: 2
Width: 2
perimeter = 8

Height: 5
Width: 1
perimeter = 8

Notice that it didn’t work for the first two inputs, it worked for the next two and it
didn’t work on the last one. Try and figure out what is in common with the working
ones. Once you have some idea what the problem is finding the cause is easier. With
your own programs you should try more test cases if you need them.
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What does the program do?

The next thing to do is to look at the source code. One of the most important things
to do while programming is reading source code. The primary way to do this is code
walkthroughs.

A code walkthrough starts at the first line, and works its way down until the program
is done. While loops and if statements mean that some lines may never be run and
some lines are run many times. At each line you figure out what Python has done.

Lets start with the simple perimeter program. Don’t type it in, you are going to read
it, not run it. The source code is:

1 height = input("Height: ")
2 width = input("Width: ")
3 print "perimeter = ", width+height+width+width

* * *

Q: What is the first line Python runs?

A: The first line is alway run first. In this case it is:

height = input("Height: ")

Q: What does that line do?

A: Prints Height: , waits for the user to type a number in, and puts that in the
variable height.

Q: What is the next line that runs?

A: In general, it is the next line down which is: width = input("Width: ")

Q: What does that line do?

A: Prints Width: , waits for the user to type a number in, and puts what the user
types in the variable width.

Q: What is the next line that runs?

A:When the next line is not indentedmore or less than the current line, it is the line
right afterwards, so it is: print "perimeter = ", width+height+width+width (It
may also run a function in the current line, but thats a future chapter.)
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Q: What does that line do?

A: First it prints perimeter =, then it prints width+height+width+width.

Q: Does width+height+width+width calculate the perimeter properly?

A: Let’s see, perimeter of a rectangle is the bottom (width) plus the left side (height)
plus the top (width) plus the right side (huh?). The last item should be the right
side’s length, or the height.

Q: Do you understand why some of the times the perimeter was calculated
‘correctly’?

A: It was calculated correctly when the width and the height were equal.

* * *

The next program we will do a code walk-through for is a program that is supposed
to print outfive dots on the screen. However, this is what the program is outputting:

. . . .

And here is the program:

1 number = 5
2 while number > 1:
3 print ".",
4 number = number - 1
5 print

This program will be more complex to walk-through since it now has indented por-
tions (or control structures). Let us begin.

Q: What is the first line to be run?

A: The first line of the file: number = 5

Q: What does it do?

A: Puts the number 5 in the variable number.

Q: What is the next line?

A: The next line is: while number > 1:
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Q: What does it do?

A: Well, while statements in general look at their expression, and if it is true they
do the next indented block of code, otherwise they skip the next indented block of
code.

Q: So what does it do right now?

A: If number > 1 is true then the next two lines will be run.

Q: So is number > 1?

A: The last value put into number was 5 and 5 > 1 so yes.

Q: So what is the next line?

A: Since the while was true the next line is: print ".",

Q: What does that line do?

A: Prints one dot and since the statement ends with a , the next print statement
will not be on a different screen line.

Q: What is the next line?

A: number = number - 1 since that is following line and there are no indent changes.

Q: What does it do?

A: It calculates number - 1, which is the current value of number (or 5) subtracts 1
from it, and makes that the new value of number. So basically it changes number’s
value from 5 to 4.

Q: What is the next line?

A:Well, the indent level decreases so we have to look at what type of control struc-
ture it is. It is a while loop, so we have to go back to the while clause which is
while number > 1:

Q: What does it do?

A: It looks at the value of number, which is 4, and compares it to 1 and since 4 > 1
the while loop continues.

Q: What is the next line?
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A: Since the while loop was true, the next line is: print ".",

Q: What does it do?

A: It prints a second dot on the line.

Q: What is the next line?

A: No indent change so it is:

number = number - 1

Q: And what does it do?

A: It talks the current value of number (4), subtracts 1 from it, which gives it 3 and
then finally makes 3 the new value of number.

Q: What is the next line?

A: Since there is an indent change caused by the end of the while loop, the next line
is:

while number > 1:

Q: What does it do?

A: It compares the current value of number (3) to 1. 3 > 1 so the while loop contin-
ues.

Q: What is the next line?

A: Since the while loop condition was true the next line is: print ".",

Q: And it does what?

A: A third dot is printed on the line.

Q: What is the next line?

A: It is: number = number - 1

Q: What does it do?

A: It takes the current value of number (3) subtracts from it 1 and makes the 2 the
new value of number.

Q: What is the next line?
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A: Back up to the start of the while loop: while number > 1:

Q: What does it do?

A: It compares the current value of number (2) to 1. Since 2 > 1 the while loop
continues.

Q: What is the next line?

A: Since the while loop is continuing: print ".",

Q: What does it do?

A: It discovers the meaning of life, the universe and everything. I’m joking. (I had
to make sure you were awake.) The line prints a fourth dot on the screen.

Q: What is the next line?

A: It’s: number = number - 1

Q: What does it do?

A: Takes the current value of number (2) subtracts 1 and makes 1 the new value of
number.

Q: What is the next line?

A: Back up to the while loop: while number > 1:

Q: What does the line do?

A: It compares the current value of number (1) to 1. Since 1 > 1 is false (one is not
greater than one), the while loop exits.

Q: What is the next line?

A: Since the while loop condition was false the next line is the line after the while
loop exits, or: print

Q: What does that line do?

A: Makes the screen go to the next line.

Q: Why doesn’t the program print 5 dots?

A: The loop exits 1 dot too soon.
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Q: How can we fix that?

A: Make the loop exit 1 dot later.

Q: And how do we do that?

A: There are several ways. One way would be to change the while loop to:

while number > 0:

Anotherwaywould be to change the conditional to: number >= 1. There are a couple
others.

How do I fix the program?

You need to figure out what the program is doing. You need to figure out what the
program should do. Figure out what the difference between the two is.

Make your program as short as possible. Is it still wrong? Make it shorter until you
will either see the bug, or make this example work. This is called minimal working
example, MWE.

Insert some print command in the middle of program and ask it to print variable of
question. This is called tracing.

Debugging is a skill that has to be done to be learned. If you can’t figure it out after
an hour or so take a break, talk to someone about the problem or contemplate the
lint in your navel. Come back in a while and you will probably have new ideas about
the problem. Good luck.

Exercises

This program should check if the number is even. However, it almost always prints
“is very strange”. Why? Find the bug.

1 number = input("Tell me a number: ")
2 if number / 2 == 0:
3 print number, "is even."
4 elif number / 2 == 1:
5 print number, "is odd."
6 else:
7 print number, "is very strange."
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* * *

The following program should calculate the square root. However, sometimes if out-
puts errors. When it does it? How to correct the program?

1 import math
2 number = input("Tell me a number: ")
3 math.sqrt(number)
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Functions

Creating Functions

To start off this chapter I am going to give you a example of what you could do but
shouldn’t (so don’t type it in):

1 a = 23
2 b = -23
3

4 if a < 0:
5 a = -a
6

7 if b < 0:
8 b = -b
9

10 if a == b:
11 print "The absolute values of", a, "and", b, "are equal"
12 else:
13 print "The absolute values of a and b are different"

with the output being:

The absolute values of 23 and 23 are equal

The program seems a little repetitive. (Programmers hate to repeat things (That’s
what computers are for aren’t they?)) Fortunately Python allows you to create func-
tions to remove duplication. Here’s the rewritten example:

1 a = 23
2 b = -23
3 def my_abs(num):
4 if num < 0:
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5 num = -num
6 return num
7

8 if my_abs(a) == my_abs(b):
9 print "The absolute values of", a, "and", b, "are equal"
10 else:
11 print "The absolute values of a and b are different"

with the output being:

The absolute values of 23 and -23 are equal

The key feature of this program is the def statement. def (short for define) starts
a function definition. def is followed by the name of the function my_abs. Next
comes a ( followed by the parameter num (num is passed from the program into the
function when the function is called). The statements after the : are executed when
the function is used. The statements continue until either the indented statements
end or a return is encountered. The return statement returns a value back to the
place where the function was called.

Notice how the values of a and b are not changed. Functions of course can be used
to repeat tasks (and to eliminate repeat code) that don’t return values. Here’s some
examples:

1 def hello():
2 print "Hello"
3

4 def area(width, height):
5 return width*height
6

7 def print_welcome(name):
8 print "Welcome", name
9

10 hello()
11 hello()
12

13 print_welcome("Fred")
14 w = 4
15 h = 5
16 print "width =", w, "height =", h, "area =", area(w, h)

with output being:
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Hello
Hello
Welcome Fred
width = 4 height = 5 area = 20

That example just shows some more stuff that you can do with functions. Notice
that you can use no arguments or two or more. Notice also when a function doesn’t
need to send back a value, a return is optional.

Variables in functions

When eliminating repeated code, you often have variables in the repeated code. In
Python, these are dealt in a special way. So far all variables we have seen are global
variables. Functions have a special type of variable called local variables. These
variables only exist while the function is running. When a local variable has the
same name as another variable (such as a global variable), the local variable hides
the other. Sound confusing? Well, these next examples (which are a bit contrived)
should help clear things up.

1 a = 4
2 def print_func():
3 a = 17
4 print "a = ", a, "(this is local a)"
5 print_func()
6 print "a = ", a, "(this is global a)"

When run, we will receive an output of:

a = 17 (this is local a)
a = 4 (this is global a)

Variable assignments inside a function do not override global variables, they exist
only inside the function. Even though a was assigned a new value inside the func-
tion, this newly assigned value was only relevant to print_func, when the function
finishes running, and the a’s values is printed again, we see the originally assigned
values.

More complex example

1 a_var = 10
2 b_var = 15
3 e_var = 25
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4

5 def a_func(a_var):
6 print "in a_func a_var = ", a_var
7 b_var = 100 + a_var
8 d_var = 2*a_var
9 print "in a_func b_var = ", b_var
10 print "in a_func d_var = ", d_var
11 print "in a_func e_var = ", e_var
12 return b_var + 10
13

14 c_var = a_func(b_var)
15

16 print "a_var = ", a_var
17 print "b_var = ", b_var
18 print "c_var = ", c_var
19 print "d_var = ", d_var

The output is:

in a_func a_var = 15
in a_func b_var = 115
in a_func d_var = 30
in a_func e_var = 25
a_var = 10
b_var = 15
c_var = 125
d_var =
Traceback (innermost last):

File "separate.py", line 20, in ?
print "d_var = ", d_var

NameError: d_var

In this example the variables a_var, b_var, and d_var are all local variables when
they are inside the function a_func. After the statement return _�var + 10 is run,
they all cease to exist. The variable a_var is automatically a local variable since it is a
parameter name. The variables b_var and d_var are local variables since they appear
on the left of an equals sign in the function in the statements b_var = 100 + a_var
and d_var = 2*a_var .

Inside of the function a_var is 15 since the function is called with a_func(b_var).
Since at that point in time b_var is 15, the call to the function is a_func(15) This
ends up setting a_var to 15 when it is inside of a_func.
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As you can see, once the function finishes running, the local variables a_var and
b_var that had hidden the global variables of the same name are gone. Then the
statement print "a_var = ", a_var prints the value 10 rather than the value 15
since the local variable that hid the global variable is gone.

Another thing to notice is the NameError that happens at the end. This appears since
the variable d_var no longer exists since a_func finished. All the local variables are
deleted when the function exits. If you want to get something from a function, then
you will have to use return something.

One last thing to notice is that the value of e_var remains unchanged inside a_func
since it is not a parameter and it never appears on the left of an equals sign inside
of the function a_func. When a global variable is accessed inside a function it is the
global variable from the outside.

Functions allow local variables that exist only inside the function and can hide other
variables that are outside the function.

Examples

1 # converts temperature to Fahrenheit or Celsius
2

3 def print_options():
4 print "Options:"
5 print " 'p' print options"
6 print " 'c' convert from Celsius"
7 print " 'f' convert from Fahrenheit"
8 print " 'q' quit the program"
9

10 def celsius_to_fahrenheit(c_temp):
11 return 9.0/5.0*c_temp+32
12

13 def fahrenheit_to_celsius(f_temp):
14 return (f_temp - 32.0)*5.0/9.0
15

16 choice = "p"
17 while choice != "q":
18 if choice == "c":
19 temp = input("Celsius temperature:")
20 print "Fahrenheit:", celsius_to_fahrenheit(temp)
21 elif choice == "f":
22 temp = input("Fahrenheit temperature:")
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23 print "Celsius:", fahrenheit_to_celsius(temp)
24 elif choice != "q":
25 print_options()
26 choice = raw_input("option:")

Sample run:

Options:
'p' print options
'c' convert from Celsius
'f' convert from Fahrenheit
'q' quit the program

option:c
Celsius temperature:30
Fahrenheit: 86.0
option:f
Fahrenheit temperature:60
Celsius: 15.5555555556
option:q

* * *

1 # By Amos Satterlee
2 print
3 def hello():
4 print 'Hello!'
5

6 def area(width, height):
7 return width*height
8

9 def print_welcome(name):
10 print 'Welcome, ', name
11

12 name = raw_input('Your Name: ')
13 hello(),
14 print_welcome(name)
15 print
16 print 'To find the area of a rectangle, '
17 print 'Enter the width and height below.'
18 print
19 w = input('Width: ')
20 while w <= 0:
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21 print 'Must be a positive number'
22 w = input('Width: ')
23 h = input('Height: ')
24 while h <= 0:
25 print 'Must be a positive number'
26 h = input('Height: ')
27 print 'Width =', w, ' Height =', h, ' so Area =', area(w, h)

Sample Run:

Your Name: Josh
Hello!
Welcome, Josh

To find the area of a rectangle,
Enter the width and height below.

Width: -4
Must be a positive number
Width: 4
Height: 3
Width = 4 Height = 3 so Area = 12

Exercises

Rewrite the area.py program (p. 79) to have a separate function for the area of a
square, the area of a rectangle, and the area of a circle (3.14 * radius**2). This
program should include a menu interface.
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Lists

Variables with more than one value

You have already seen ordinary variables that store a single value. However other
variable types can hold more than one value. The simplest type is called a list. Here
is a example of a list being used:

1 which_one = input("What month (1-12)? ")
2 months = ['January', 'February', 'March', \
3 'April', 'May', 'June', 'July', \
4 'August', 'September', 'October', 'November', 'December']
5 if 1 <= which_one <= 12:
6 print "The month is", months[which_one - 1]

and a output example:

What month (1-12)? 3
The month is March

In this example the months is a list. months is defined with the lines

months = ['January', 'February', 'March', \
'April', 'May', 'June', 'July', \
'August', 'September', 'October', 'November', 'December']

(Note that a \ can be used to split a long line).

The [ and ] start and end the list with comma’s (“, ”) separating the list items. The
list is used in months[which_one - 1]. A list consists of items that are numbered
starting at 0. In other words if you wanted January you would use months[0]. Give
a list a number and it will return the value that is stored at that location.
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The statement if 1 <= which_one <= 12: will only be true if which_one is be-
tween one and twelve inclusive (in other words it is what you would expect if you
have seen that in algebra).

* * *

Lists can be thought of as a series of boxes. Each box contains a different value. For
example, the boxes created by

demolist = ['life', 42, 'the universe', 6, 'and' , 7]

would look like this:

box number 0 1 2 3 4 5

demolist ‘life’ 42 ‘the universe’ 6 ‘and’ 7

Eachbox is referenced by its number so the statement demolist[0]would get 'life',
demolist[1] would get 42 and so on up to demolist[5] getting 7.

Lists can contains other lists:

demolist2 = [1, "one", [3, 4]]

More features of lists

The next example is just to show a lot of other stuff lists can do (for once I don’t
expect you to type it in, but you should probably play around with lists until you are
comfortable with them.). Here goes:

1 demolist = ['life', 42, 'the universe', 6, 'and', 7]
2 print 'demolist = ', demolist
3 demolist.append('everything')
4 print "after 'everything' was appended demolist is now:"
5 print demolist
6 print 'len(demolist) =', len(demolist)
7 print 'demolist.index(42) =', demolist.index(42)
8 print 'demolist[1] =', demolist[1]
9

10 # Next we will loop through the list
11 c = 0
12 while c < len(demolist):
13 print 'demolist[', c, ']=', demolist[c]
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14 c = c + 1
15 del demolist[2]
16 print "After 'the universe' was removed demolist is now:"
17 print demolist
18 if 'life' in demolist:
19 print "'life' was found in demolist"
20 else:
21 print "'life' was not found in demolist"
22 if 'amoeba' in demolist:
23 print "'amoeba' was found in demolist"
24 if 'amoeba' not in demolist:
25 print "'amoeba' was not found in demolist"
26 demolist.sort()
27 print 'The sorted demolist is ', demolist

The output is:

demolist = ['life', 42, 'the universe', 6, 'and', 7]
after 'everything' was appended demolist is now:
['life', 42, 'the universe', 6, 'and', 7, 'everything']
len(demolist) = 7
demolist.index(42) = 1
demolist[1] = 42
demolist[ 0 ]= life
demolist[ 1 ]= 42
demolist[ 2 ]= the universe
demolist[ 3 ]= 6
demolist[ 4 ]= and
demolist[ 5 ]= 7
demolist[ 6 ]= everything
After 'the universe' was removed demolist is now:
['life', 42, 6, 'and', 7, 'everything']
'life' was found in demolist
'amoeba' was not found in demolist
The sorted demolist is [6, 7, 42, 'and', 'everything', 'life']

This example uses a whole bunch of new functions. Notice that you can just print a
whole list. Next the append function is used to add a new item to the end of the list.
len returns howmany items are in a list. The valid indexes (as in numbers that can be
used inside of the []) of a list range from 0 to len - 1. The index function tell where
the first location of an item is located in a list. Notice how demolist.index(42)
returns 1 and when demolist[1] is run it returns 42.
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Next are the lines:

1 c = 0
2 while c < len(demolist):
3 print 'demolist[', c, ']=', demolist[c]
4 c = c + 1

These lines create a variable c which starts at 0 and is incremented until it reaches
the last index of the list. Meanwhile the print statement prints out each element of
the list.

The del command can be used to remove a given element in a list. The next few lines
use the in operator to test if a element is in or is not in a list.

The sort function sorts the list. This is useful if you need a list in order from smallest
number to largest or alphabetical. Note that this rearranges the list.

In summary for a list the following operations occur:

example explanation

demolist[2] accesses the element at index 2

demolist[2] = 3 sets the element at index 2 to be 3

del demolist[2] removes the element at index 2

len(demolist) returns the length of list

"value" in demolist is true if "value" is an element in list

"value" not in demolist is true if "value" is not an element in list

demolist.sort() sorts list

demolist.index("value") index of the first place w "value" occurs

demolist.append("value") adds an element "value" at the end of the list

demolist.remove("value") removes the first occurrence of value from list

* * *

So demolist.sort() sorts the list. Use of sort is not similar to use of, saying,
print—for some reason it must be specified in the very end of object name, after
the dot. Moreover, sort is applicable only to lists. This is the first breath of object-
oriented programming: demolist is object of list type, and sort is its method.
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* * *

This next example uses list features in a more useful way:

1 menu_item = 0
2 list = []
3 while menu_item != 9:
4 print "--------------------"
5 print "1. Print the list"
6 print "2. Add a name to the list"
7 print "3. Remove a name from the list"
8 print "4. Change an item in the list"
9 print "9. Quit"
10 menu_item = input("Pick an item from the menu: ")
11 if menu_item == 1:
12 current = 0
13 if len(list) > 0:
14 while current < len(list):
15 print current, ". ", list[current]
16 current = current + 1
17 else:
18 print "List is empty"
19 elif menu_item == 2:
20 name = raw_input("Type in a name to add: ")
21 list.append(name)
22 elif menu_item == 3:
23 del_name = raw_input("What name would you like to remove: ")
24 if del_name in list:
25 item_number = list.index(del_name)
26 del list[item_number]
27 # Above removes only the first occurrence of the name
28 else:
29 print del_name, " was not found"
30 elif menu_item == 4:
31 old_name = raw_input("What name would you like to change: ")
32 if old_name in list:
33 item_number = list.index(old_name)
34 new_name = raw_input("What is the new name: ")
35 list[item_number] = new_name
36 else:
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37 print old_name, " was not found"
38 print "Goodbye"

And here is part of the output:

--------------------
1. Print the list
2. Add a name to the list
3. Remove a name from the list
4. Change an item in the list
9. Quit

Pick an item from the menu: 2
Type in a name to add: Jack

Pick an item from the menu: 2
Type in a name to add: Jill

Pick an item from the menu: 1
0 . Jack
1 . Jill

Pick an item from the menu: 3
What name would you like to remove: Jack

Pick an item from the menu: 4
What name would you like to change: Jill
What is the new name: Jill Peters

Pick an item from the menu: 1
0 . Jill Peters

Pick an item from the menu: 9
Goodbye

That was a long program! Let’s take a look at the source code. The line list = []
makes the variable list a list with no items (or elements). The next important line is
while menu_item != 9:. This line starts a loop that allows themenu system for this
program. The next few lines display a menu and decide which part of the program
to run.

Program goes through the list and prints each name:
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current = 0
if len(list) > 0:

while current < len(list):
print current, ". ", list[current]
current = current + 1

else:
print "List is empty"

len(list_name) tells how many items are in a list. If len returns 0 then the list is
empty.

Then a few lines later the statement list.append(name) appears. It uses the append
function to add a item to the end of the list. Jump down another two lines and notice
this section of code:

item_number = list.index(del_name)
del list[item_number]

Here the index function is used to find the index value that will be used later to
remove the item. del list[item_number] is used to remove a element of the list.

old_name = raw_input("What name would you like to change: ")
if old_name in list:

item_number = list.index(old_name)
new_name = raw_input("What is the new name: ")
list[item_number] = new_name

else:
print old_name, " was not found"

The next section uses index to find the item_number and then puts new_name where
the old_name was.

* * *

Congratulations! With lists under your belt, you now know enough of the language
that you could do any computations that a computer can do (this is technically
known as Turing-Completness). Of course, there are still many features that are used
to make your life easier.

Examples

1 # This program runs a test of knowledge
2
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3 true = 1
4 false = 0
5

6 # 1. First get the test questions
7 # Later this might be modified to use file input and output.
8 def get_questions():
9 # notice how the data is stored as a list of lists
10 return [["What color is the sky on a clear day? ", "blue"],
11 ["What is the answer to life, the universe and everything? ",
12 "42"],
13 ["What is a three letter word for mouse trap? ", "cat"]]
14 # 2. This will test a single question and returns
15 # 'True' if the user typed the correct answer, otherwise 'False'
16 def check_question(question_and_answer):
17 # extract the question and the answer from the list
18 question = question_and_answer[0]
19 answer = question_and_answer[1]
20 # give the question to the user
21 given_answer = raw_input(question)
22 # compare the user's answer to the testers answer
23 if answer == given_answer:
24 print "Correct"
25 return true
26 else:
27 print "Incorrect, correct was:", answer
28 return false
29 # 3. This will run through all the questions
30 def run_test(questions):
31 if len(questions) == 0:
32 print "No questions were given."
33 # the return exits the function
34 return
35 index = 0
36 right = 0
37 while index < len(questions):
38 # check the question
39 if check_question(questions[index]):
40 right = right + 1
41 # go to the next question
42 index = index + 1
43 # notice the order: first multiply, then divide
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44 pp = right*100/len(questions)
45 print "You got", pp, "% right out of", len(questions)
46 # 4. Now let us run the questions
47 run_test(get_questions())

The values True and False point to 1 and 0, respectively. They are often used in
sanity checks, loop conditions etc. You will learn more about this a little bit later
(chapter “Boolean Expressions”).

Sample output:

What color is the sky on a clear day? green
Incorrect, correct was: blue
What is the answer to life, the universe and everything? 42
Correct
What is a three letter word for mouse trap? cat
Correct
You got 66 % right out of 3

Exercises

Expand the test.py program so it has menu giving the option of taking the test,
viewing the list of questions and answers, and an option to quit. Also, add a new
question to ask, “What noise does a truly advancedmachinemake?” with the answer
of “ping”.
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“For” Loops

And here is the new typing exercise for this chapter:

1 onetoten = range(1, 11)
2 for count in onetoten:
3 print count

and the ever-present output:

1
2
3
4
5
6
7
8
9
10

The output looks awfully familiar but the program code looks different. The first
line uses the range function. The range function uses two arguments like this
range(start, finish). start is the first number that is produced. finish is one
larger than the last number. Note that this program could have been done in a
shorter way:

1 for count in range(1, 11):
2 print count

Here are some examples to show what happens with the range command:

>>> range(1, 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
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>>> range(-32, -20)
[-32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21]
>>> range(5, 21)
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
>>> range(21, 5)
[]

Thenext line for count in onetoten:uses the for control structure. A for control
structure looks like for variable in list:. list is gone through starting with the
first element of the list and going to the last. As for goes through each element in a
list it puts each into variable. That allows variable to be used in each successive
time the for loop is run through. Here is another example (you don’t have to type
this) to demonstrate:

1 demolist = ['life', 42, 'the universe', 6, 'and', 7, 'everything']
2 for item in demolist:
3 print "The Current item is:",
4 print item

The output is:

The Current item is: life
The Current item is: 42
The Current item is: the universe
The Current item is: 6
The Current item is: and
The Current item is: 7
The Current item is: everything

Notice how the for loop goes through and sets item to each element in the list. (No-
tice how if you don’t want print to go to the next line add a comma at the end of
the statement (i.e. if you want to print something else on that line). ) So, what is
for good for? (groan) The first use is to go through all the elements of a list and do
something with each of them. Here a quick way to add up all the elements:

1 list = [2, 4, 6, 8]
2 sum = 0
3 for num in list:
4 sum = sum + num
5 print "The sum is: ", sum

with the output simply being:

The sum is: 20
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Or you could write a program to find out if there are any duplicates in a list like this
program does:

1 list = [4, 5, 7, 8, 9, 1, 0, 7, 10]
2 list.sort()
3 prev = list[0]
4 del list[0]
5 for item in list:
6 if prev == item:
7 print "Duplicate of ", prev, " Found"
8 prev = item

and for good measure:

Duplicate of 7 Found

Okay, so howdoes it work? Here is a special debugging version to help you understand
(you don’t need to type this in):

1 l = [4, 5, 7, 8, 9, 1, 0, 7, 10]
2 print "l = [4, 5, 7, 8, 9, 1, 0, 7, 10]", "\tl:", l
3 l.sort()
4 print "l.sort()", "\tl:", l
5 prev = l[0]
6 print "prev = l[0]", "\tprev:", prev
7 del l[0]
8 print "del l[0]", "\tl:", l
9 for item in l:
10 if prev == item:
11 print "Duplicate of ", prev, " Found"
12 print "if prev == item:", "\tprev:", prev, "\titem:", item
13 prev = item
14 print "prev = item", "\t\tprev:", prev, "\titem:", item

with the output being:

l = [4, 5, 7, 8, 9, 1, 0, 7, 10] l: [4, 5, 7, 8, 9, 1, 0, 7, 10]
l.sort() l: [0, 1, 4, 5, 7, 7, 8, 9, 10]
prev = l[0] prev: 0
del l[0] l: [1, 4, 5, 7, 7, 8, 9, 10]
if prev == item: prev: 0 item: 1
prev = item prev: 1 item: 1
if prev == item: prev: 1 item: 4
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prev = item prev: 4 item: 4
if prev == item: prev: 4 item: 5
prev = item prev: 5 item: 5
if prev == item: prev: 5 item: 7
prev = item prev: 7 item: 7
Duplicate of 7 Found
if prev == item: prev: 7 item: 7
prev = item prev: 7 item: 7
if prev == item: prev: 7 item: 8
prev = item prev: 8 item: 8
if prev == item: prev: 8 item: 9
prev = item prev: 9 item: 9
if prev == item: prev: 9 item: 10
prev = item prev: 10 item: 10

The reason I put so many print statements in the code was so that you can see what
is happening in each line (by the way, if you can’t figure out why a program is not
working, try putting in lots of print statements to you can see what is happening).

First the program starts with a boring old list. Next the program sorts the list. This
is so that any duplicates get put next to each other. The program then initializes a
prev(ious) variable. Next the first element of the list is deleted so that the first item
is not incorrectly thought to be a duplicate. Next a for loop is gone into. Each item
of the list is checked to see if it is the same as the previous. If it is a duplicate was
found. The value of prev is then changed so that the next time the for loop is run
through prev is the previous item to the current. Sure enough, the 7 is found to be
a duplicate. (Notice how \t is used to print a tab.)

The other way to use for loops is to do something a certain number of times. Here is
some code to print out the first 11 numbers of the Fibonacci series:

1 a = 1
2 b = 1
3 for c in range(1, 10):
4 print a,
5 n = a + b
6 a = b
7 b = n

with the surprising output:

1 1 2 3 5 8 13 21 34
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Everything that can be done with for loops can also be done with while loops but
for loops give a easy way to go through all the elements in a list or to do something
a certain number of times.

* * *

How to do something with each element of the list? Consider the following:

1 my_list = [1, 2, 3, 4, 5]
2 my_new_list = [i * 5 for i in my_list]
3 print my_list, "\n", my_new_list

And output:

[1, 2, 3, 4, 5]
[5, 10, 15, 20, 25]

The same logic works for strings (but you will need to join the result back to string):

1 a = "abcde"
2 b = [i * 5 for i in a]
3 c = "".join(b)
4 print b
5 print c

['aaaaa', 'bbbbb', 'ccccc', 'ddddd', 'eeeee']
aaaaabbbbbcccccdddddeeeee

Exercises

Write a program which asks for a number and then prints “I know how to use loops”
number times.
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Booleans

Now we need to supply our programs with logic. Here is a little example of Boolean
expressions:

1 a = 6
2 b = 7
3 c = 42
4 print 1, a == 6
5 print 2, a == 7
6 print 3, a == 6 and b == 7
7 print 4, a == 7 and b == 7
8 print 5, not a == 7 and b == 7
9 print 6, a == 7 or b == 7
10 print 7, a == 7 or b == 6
11 print 8, not (a == 7 and b == 6)
12 print 9, not a == 7 and b == 6

With the output being:

1 True
2 False
3 True
4 False
5 True
6 True
7 False
8 True
9 False

What is going on? The program consists of a bunch of funny looking print state-
ments. Each print statement prints a number and a expression. The number is to
help keep track of which statement I am dealing with. Notice how each expression
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ends up being either 0 or 1. In Python False also is written as 0 and True is written
as 1.

The lines:

1 print 1, a == 6
2 print 2, a == 7

print out True and False respectively just as expected since the first is true and the
second is false.

The third print,

print 3, a == 6 and b == 7

is a little different. The operator and means if both the statement before and the
statement after are true then the whole expression is true otherwise the whole ex-
pression is false.

The next line,

print 4, a == 7 and b == 7

shows how if part of an and expression is false, the whole thing is false. The behavior
of and can be summarized as follows:

expression result

true and true true

true and false false

false and true false

false and false false

Notice that if the first expression is false Python does not check the second expres-
sion since it knows the whole expression is false.

The next line,

print 5, not a == 7 and b == 7

uses the not operator. not just gives the opposite of the expression.

By the way, this expression could be rewritten as

print 5, a != 7 and b == 7

Here is the table:
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expression result

not true false

not false true

The two following lines,

print 6, a == 7 or b == 7

and

print 7, a == 7 or b == 6

use the or operator. The or operator returns true if the first expression is true, or
if the second expression is true or both are true. If neither are true it returns false.
Here’s the table:

expression result

true or true true

true or false true

false or true true

false or false false

Notice that if the first expression is true Python doesn’t check the second expression
since it knows the whole expression is true. This works since or is true if at least one
half of the expression is true. The first part is true so the second part could be either
false or true, but the whole expression is still true.

The next two lines,

print 8, not (a == 7 and b == 6)

and

print 9, not a == 7 and b == 6

show that parentheses can be used to group expressions and force one part to be
evaluated first. Notice that the parentheses changed the expression from false to
true. This occurred since the parentheses forced the not to apply to the whole ex-
pression instead of just the a == 7 portion.
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* * *

It is easy to understandPythonbehaviorwhenbooleans applied to True’s and False’s
(or to 1’s and 0’s). Other types of objects are more cryptic. Look on these examples:

>>> 'b' == ('a' or 'b')
False
>>> 'a' == ('a' or 'b')
True

Crazy, isn’t it? This is because when or used with strings, Python simply returns the
first True value. And also because non-empty string is always True:

>>> 'a' or 'b'
'a'
>>> '' or 'b'
'b'

There are special rules also for other types of objects and other operations so be
careful when applying Boolean functions to anything different from True/False/0/1.

* * *

Here is an example of using a Boolean expression:

1 list = ["Life", "The Universe", "Everything", "Jack", "Jill",
2 "Life", "Jill"]
3 # Make a copy of the list.
4 # See the More on Lists chapter to explain what [:] means.
5 copy = list[:]
6 # Sort the copy
7 copy.sort()
8 prev = copy[0]
9 del copy[0]
10 count = 0
11 # go through the list searching for a match
12 while count < len(copy) and copy[count] != prev:
13 prev = copy[count]
14 count = count + 1
15 # If a match was not found then count can't be < len
16 # since the while loop continues while count is < len
17 # and no match is found
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18 if count < len(copy):
19 print "First Match: ", prev

And here is the output:

First Match: Jill

This programworks by continuing to check formatch while count < len(copy and
copy[count]. When either count is greater than the last index of copy or a match
has been found the and is no longer true so the loop exits. The if simply checks to
make sure that the while exited because a match was found.

The other ‘trick’ of and is used in this example. If you look at the table for and no-
tice that the third entry is “false and won’t check”. If count >= len(copy) (in other
words count < len(copy) is false) then copy[count] is never looked at. This is be-
cause Python knows that if the first is false then they both can’t be true. This is
known as a short circuit and is useful if the second half of the and will cause an error
if something is wrong.

I used the first expression (count < len(copy)) to check and see if countwas a valid
index for copy. (If you don’t believe me remove the matches ‘Jill’ and ‘Life’, check
that it still works and then reverse the order of count < len(copy) and copy[count]
!= prev to copy[count] != prev and count < len(copy).)

Boolean expressions can be used when you need to check two or more different
things at once.

Examples

1 """
2 This programs asks a user for a name and a password.
3 It then checks them to make sure the the user is allowed in.
4 """
5 name = raw_input("What is your name? ")
6 password = raw_input("What is the password? ")
7 if name == "Josh" and password == "Friday":
8 print "Welcome Josh"
9 elif name == "Fred" and password == "Rock":
10 print "Welcome Fred"
11 else:
12 print "I don't know you."

(Note multi-line commentmade with triple quotes.)
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Sample runs:

What is your name? Josh
What is the password? Friday
Welcome Josh

or

What is your name? Bill
What is the password? Money
I don't know you.

Exercises

Write a program that has a user guess your name, but they only get 3 chances to do
so until the program quits.
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File Input and Output

Here is a simple example of file I/O (input/output):

1 # Write a file
2 out_file = open("test.txt", "w")
3 out_file.write("This text is going to outfile\nLook and see!")
4 out_file.close()
5

6 # Read a file
7 in_file = open("test.txt", "r")
8 text = in_file.read()
9 in_file.close()
10

11 print text

The output and the contents of the file test.txt are:

This text is going to outfile
Look and see!

Notice that it wrote a file called test.txt in the directory that you ran the program
from. The \n in the string tells Python to put a newline where it is.

A overview of file I/O is:

1. Get a file object with the open function.

2. Read or write to the file object (depending on how it was opened)

3. Close it

The first step is to get a file object. The way to do this is to use the open function.
The format is

file_object = open(filename, mode)



128 File Input and Output

where file_object is the variable to put the file object, filename is a string with
the filename, and mode is “r” to read a file or “w” to write a file (and a few others we
will skip here). Next the file objects functions can be called.

The two most common functions are read and write. The write function adds a
string to the end of the file. The read function reads the next thing in the file and
returns it as a string. If no argument is given it will return the whole file (as done in
the example).

Exercises

White a program which ask for the number, then calculate its square root and save
result in the file result.txt.
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Introduce Python turtle

Do you want some fun? Draw something with Python? Most of recent installations
of Python contain module for turtle graphics which is a popular way for introducing
programming. Turtle graphicswas introduced as a part of the original Logo program-
ming language developed by Wally Feurzig and Seymour Papert in 1966.

Open Python shell. Now imagine a robotic turtle starting at (0, 0) in the x-y plane.
After typing import turtle, give it the name, then command to go 15 units forward:

>>> import turtle
>>> jane = turtle.Turtle()
>>> jane.forward(15)

And this will look like:

itmoved (on-screen!) 15 pixels in the direction it is facing, drawing a line as itmoves.
Give it the command <name>.right(25) and it rotates 25◦ clockwise. By combining
together these and similar commands, intricate shapes and pictures can easily be
drawn.

Examples

All these examples are better run as separate Python programs. To finish, close
Python turtle window manually.
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1 # Example with cycle
2 import turtle
3 spiro = turtle.Turtle()
4 for i in range(20):
5 spiro.forward(i * 10)
6 spiro.right(144)
7 turtle.done()

Output:

* * *

1 # Example with colors
2 import turtle
3 jill = turtle.Turtle()
4 jill.color('red', 'yellow')
5 jill.begin_fill()
6 while True:
7 jill.forward(200)
8 jill.left(170)
9 if abs(jill.pos()) < 1:
10 break
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11 jill.end_fill()
12 turtle.done()

Output:

* * *

1 # Fractal tree example
2 # with function and recursion
3 import turtle
4 def tree(branchLen, t):
5 if branchLen > 5:
6 t.forward(branchLen)
7 t.right(20)
8 tree(branchLen-15, t)
9 t.left(40)
10 tree(branchLen-15, t)
11 t.right(20)
12 t.backward(branchLen)
13 t = turtle.Turtle()
14 t.left(90)
15 t.up()
16 t.backward(100)
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17 t.down()
18 t.color("green")
19 tree(75, t)
20 turtle.done()

Output:

* * *

1 # Draw with strokes example
2 import turtle
3

4 t = turtle.Turtle()
5

6 t.shape("turtle")
7 t.color("Red")
8 t.penup()
9 t.goto(-100, 0)
10 t.fillcolor("Red")
11 t.pendown()
12
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13 t.begin_fill()
14 t.goto(-100, 50)
15 t.goto(100, 50)
16 t.goto(100, 0)
17 t.goto(-100, 0)
18 t.end_fill()
19

20 t.penup()
21 t.goto(-100, 50)
22 t.fillcolor("Green")
23 t.color("Green")
24 t.pendown()
25

26 t.begin_fill()
27 t.goto(0, 100)
28 t.goto(100, 50)
29 t.goto(-100, 50)
30 t.end_fill()
31

32 t.penup()
33 t.goto(-40, 0)
34 t.color("Red")
35 t.fillcolor("Orange")
36 t.pendown()
37

38 t.begin_fill()
39 t.goto(-40, 30)
40 t.goto(-20, 30)
41 t.goto(-20, 0)
42 t.goto(-40, 0)
43 t.end_fill()
44

45 t.penup()
46 t.goto(20, 20)
47 t.fillcolor("White")
48 t.pendown()
49

50 t.begin_fill()
51 t.goto(20, 40)
52 t.goto(50, 40)
53 t.goto(50, 20)
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54 t.goto(20, 20)
55 t.end_fill()
56

57 t.hideturtle()
58 t.penup()
59 t.goto(-130, -50)
60 t.write("This is a house that Jack built",
61 font=("Arial", 20, "normal"))

Output:

This is a house that Jack built

Exercises

Draw something attractive with Python turtle.
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Who Goes There-2, or GUI

Personally, I always prefer the program to work regardless of how it looks. If the
terminal application does the job, then why do we need anything more advanced?
However, there are people which like graphical bells and whistles almost equally (or
sometimes even more) then the actual algorithm.

This chapter introduces Graphical User Interface (GUI) made with Python. The fol-
lowing program does almost the same thing as our earlier “Who goes there?”:

1 from Tkinter import *
2 root = Tk()
3 svalue = StringVar() # defines the widget state as string
4

5 text = Text(root, height=1, width=15)
6 text.insert(END, "Who goes there?")
7 text.pack() # organizes widgets in blocks
8

9 txar = Entry(root, textvariable=svalue) # adds a textarea widget
10 txar.pack()
11 def act():
12 print 'Welcome, ' '%s' % svalue.get()
13

14 bttn = Button(root, text="Answer!", command=act)
15 bttn.pack() # third widget block
16

17 root.mainloop() # to keep window

It uses Tkinter, one of many Python graphical modules. Tkinter has several advan-
tages: it is simple, and it is included in most recent Python distributions and works
well on many operation systems.
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If you name this program like gui.py, and run it like python gui.py, then along
with terminal, you will see new window, similar to:

If you enter your name into the text area and press button, then in terminal, you will
see something like:

Welcome, Josh

There are few things to learn even from this simplified example. Look how many
more lines of text has a GUI program comparing with terminal program. Just a re-
minder of how our terminal one looked:

1 print "Halt!"
2 s = raw_input("Who goes there? ")
3 print "You may pass, ", s

So out of 13 lines of our GUI program, only 3 needed for the terminal application.
Everything else are these mentioned above bells and whistles. They are required to
organize visual space and user input. Second, logic of these specifications is not al-
ways easy to understand. Moreover, different GUI systems have completely different
logics.

That’s it, folks. We will not go further with GUIs.

Exercises

The window above has “tk” name. How to change it? Please find out.
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Objects

So far, the programming you have been doing has been procedural. However, a lot of
programs today are object-oriented. Knowing both types, and knowing the difference,
is very important.

Below is typical procedural program which performs simple math on a single num-
ber, entered by a user:

1 num = float(input("Please enter a number:\n"))
2 first_result = num + 5
3 second_result =first_result * 2.452
4 print "The final value is:", second_result

If user enters a value “5”, the output would be:

Please enter a number:
5
The final value is: 24.52

Suppose that we want to go a bit further and make several sub-programs, functions.
This will allow for the greater flexibility, especially when the program will grow big:

1 def first(num):
2 return num + 5
3 def second(first_result):
4 return first_result * 2.452
5 def third(second_result):
6 print "The final value is:", second_result
7 num = float(input("Please enter a number:\n"))
8 first_result = first(num)
9 second_result = second(first_result)
10 third(second_result)
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(The output is the same. Program is bigger, more complicated, but easier to control.)

Procedural programs call their parts sequentially, from top to bottom. They are like
chains, or pipelines which are hard to break, to branch or to combine or re-structure.
Would be nice to have another type of programwhich first describes some entity, ob-
ject, together with everything what it can do, and only then starts the “transporter”.

Let us re-write the last program in the object-oriented way:

1 class NumChange:
2 def __init__(self):
3 self.__number = 0
4 def addfive(self, num):
5 self.__number = num
6 return self.__number + 5
7 def multiply(self, added):
8 self.__added = added
9 return self.__added * 2.452
10 maths = NumChange()
11 num = float(input("Please enter a number:\n"))
12 added = maths.addfive(num)
13 multip = maths.multiply(added)
14 print "The final value is" , multip

Program is now very different, bigger and even more complicated but amazingly,
output is exactly the same:

Please enter a number:
5
The final value is 24.52

(Well, not exactly. Please find yourself the very small difference.)

Let us start explanation by dissecting the NumChange class. There are three methods
in this class:

__init__
addfive
multiply

Eachmethodhas amandatory parameter named self. Let us look at thefirstmethod:

def __init__(self):
self.__number = 0
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Most classes in Python have an __init__ which executes automatically when an
instance of a class is created in memory (see below). Under this method, we set the
value of the number zero, and reference the object attribute using dot notation.

The self.__number = 0 line simply means “the value of the attribute ‘number’ in
the object is zero”.

Let us look at the next method:

def addfive(self, num):
self.__number = num
return self.__number + 5

This method accepts a parameter called num from the program using the class, and
then assigns the value of that parameter to the number attribute inside the object.
The method returns the value of number with 5 added to it.

The third method

def multiply(self, added):
self.__added = added
return self.__added * 2.453

accepts a parameter named added, then assigns the value of the parameter to the
added attribute, and returns the value of the added attribute multiplied by 2.452.

Notice how the name of each method begins with two underscores. These under-
scores protect data attributes frombeing accessible outside of this object. Therefore,
if somebody creates attribute with the same name somewhere else in the program,
then this attribute will not change together with the twin.

The next line

maths = NumChange()

creates an instance of the NumChange class in memory, and stores this instance in the
variable named maths.

Next line

added = maths.addfive(num)

sends the value of the num variable to the method named addfive, which is part of
the classwe stored in the variable maths, and stores the returned value in the variable
named added.

Then, next line

multip = maths.multiply(added)
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sends the value of the variable added to themethod named multiply, and stores the
returned value in the variable named multip. The last line prints the resulted value.

Congratulations, now you have an impression of what is object-oriented program-
ming!

Exercises

Add one new method to NumChange class and use it.
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Python cheatsheet

Basic

help() help

quit() exit

'' and "" quotes

\ escape

import <module>
load

= assign (not ==!)

Math

+ sum, concatenation

* multiple, repeat

- subtract

() enclose

/ divide

. decimal, class
separators

** degree

% modulus

Input and output

print print

raw_input() input
whatever

input() input text

open(file, mode)
open for reading

file.read() read

file.write() write

file.close() close

Strings

float() string to
number

int() string to
integer

str() number to
string

str.replace()
replace

str.count() count

str.strip() remove
margin whitespace

str.upper()
uppercase

str.lower()
lowercase

str.split(" ") split
by whitespaces

Compare

< less

<= less or equal

> more

>= more or equal

!= or <> not equal

== equal (not =!)

Booleans

or logical OR

and logical AND

not negation

Flow

while do until
something

if elif else
conditions
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for in do per
something

Functions

return break and
output

def define

Info

type() object type

dir() object methods

Lists

list(str) string

['...', '...']
define list

[<num>] select

list.append() add

list.index()
position

list.remove()
remove

list.sort() sort

'...'.join(list)
add

del delete whole
object

len() length

range() range

Dictionaries

{'...':'...'} define
dictionary



Homework
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Topics for self-study

I did not want to cover everything in this book. Moreover, computer technologies
develop rapidly and if I write, saying, about free non-linear video editors, in one or
two years this information will become outdated. Therefore, the following list only
points on interesting and useful software, and the reader of this book is required to
search for the rest yourself.

Note that some topics and some softwaremight be already covered (at least partially)
above. Also, please note that I developed another book, solely about R statistic en-
vironment, and you might want to take a look on it.

Biology and medicine DNA and protein data, phylogeny

Clipboard xclip, clipboard managers

Electronic books EPUB, FB2; Calibre

Files and file systems Naming rules, extensions, NTFS/HFS/extfs file systems, links;
metadata; principles of organization, OFMs; privacy and cleaning; file-centric
view; standard directory tree: wrk, coll, bin and temp; into to rsync

Fonts System fonts and local fonts, good monotype fonts

Free licenses Public Domain, Creative Commons, GPL

GIS GIS systems

HTML Basic tags, make Web page, CSS, JS; browser forgiveness

Internet HTTP, HTTPS, FTP, mailto, DOI, search tips like “site:”, “filetype:” and
“""”; principle of Internet stability; proxies, TOR, VPS and VPN; resources
like DuckDuckGo, Scholar, Pubmed, Stackoverflow; digital content like BHL,
archive.org, Gutenberg.

JPEG RAW images, RAW processing with RawTherapee
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Looseless and lossy formats Compression andno compression (BMP); image view-
ers like XnView MP

Markup Physical and logical markup; Markdown; JSON

MPEG and video Codecs, mpv as mplayer derivative, VLC; linear (like ffmpeg) and
non-linear (like Flowblade) video editors; mp4 and browsers

Operating systems Windows NT and UNIX-like; virtual machines; processes and
system monitors

PNG Transparency; Pinta (or HeliosPaint, or Krita) as raster editor

PNM Universal bitmap formats in black and white, grayscale and color

PostScript and PDF Types of PDF, notes, edit and conversion (pdftk, Xpdf tools,
PDFEscape (online), LibreOffice Draw)

Regular expressions and wildcards Intro to most important operators

SGML and XML Document and styles

Spreadsheets ssvonvert and XLS(X), ODS, spreadsheet text formats and clipboard;
relational databases and SQL; sqlitebrowser, SQLiteStudio; data analysis with R

TAR, GZIP, ZIP Archiving and compression; PeaZIP (not on Mac)

Terminal and commands Command prompt (Windows: JSLinux online), PATH,
input and output, text tools including diff

TEX and LATEX Most important LATEXcommands,make simple document online (Over-
leaf, LATEX Base), how to make poster, slides, and flowchart with Xy-Pic

Text and encodings Geany (or Kate), intro to Vim, accented words, bytesize, UTF-8
and Unicode, how to use less: search, next, quit

TIFF and DjVu Scanning, OCR

Vector and raster graphics Tracing, SVG and Inkscape

Very basics of programming Python (offline or online Skuplt-based like kwalsh);
conditions and cycles

WAVE and FLAC, MP3 Audacity

Word processing DOC(X), ODT, RTF, LibreOffice, Calligra Suite
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Phylogeny Primer

This small chapter is also more like an assignment then code example or detailed
explanation. The goal is to assess (maybe, for the first time) phylogenetic trees cre-
ations, based on public databases and online phylogeny tools.

1. Choose a favorite animal/plant group (use NCBI Taxonomy, family is prefer-
able) with > 5 members

2. Choose outgroup (use NCBI Taxonomy)

3. Copy sequences of COI (animals) or rbcL (plants) in FASTA format to the text
file (retain ”>”!)

4. Paste them to online ClustalW (http://genome.jp), save alignment file

5. Apply result to PhyML (http://phylogeny.fr)

6. Rearrange (with outgroup) and redraw the tree, find most ”primitive” and ”ad-
vanced” ingroups

http://genome.jp
http://phylogeny.fr


Some useful references

There are zillions of books about computers. Some of them (very few!) are a bit
similar to this book, or useful in some other way. This list is below.

Allesina, S. and Wilmes, M., 2019. Computing Skills for Biologists: A Toolbox.
Princeton University Press.

Arnoljd, V.I., 2014. Mathematical understanding of nature: essays on amazing
physical phenomena and their understanding by mathematicians. American
Mathematical Society.

Janssens, J., 2014. Data Science at the Command Line: Facing the Future with Time-
tested Tools. O’Reilly Media, Inc.

Powers, S., Peek, J., O’Reilly, T., Loukides, M. and Loukides, M.K., 2003. UNIX power
tools. O’Reilly Media, Inc.

Shipunov, A., 2019. Visual statistics. Use R!
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