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Patterns of polyploid evolution in the taxonomically controversial Dactylorhiza incarnata/maculata groups
were inferred genetically by analyzing 399 individuals from 177 localities for (1) four polymorphic plastid
regions yielding aggregate haplotypes and (2) nuclear ribosomal ITS allele frequencies. Concordance between
patterns observed in distributions of plastid haplotypes and ITS alleles renders ancestral polymorphism an
unlikely cause of genetic variation in diploids and allopolyploids. Combining the degree of concerted evolution
in ITS alleles (thought to reflect gene conversion) with inferred parentage provides support for a quadripartite
classification of western European allopolyploid dactylorchids according to their respective parentage and
relative dates of origin. The older allotetraploids that generally exhibit only one parental ITS allele can be
divided into those derived via hybridization between the divergent complexes we now call D. incarnata s.l.
and D. fuchsii (e.g., D. majalis) and those derived via hybridization between D. incarnata s.l. and D. maculata
(e.g., D. elata). Similarly, the younger allotetraploids that maintain evidence of both parental ITS alleles can
be divided into those derived from hybridization between D. incarnata s.l. and D. fuchsii, or perhaps in some
cases a diploid species resembling D. saccifera (e.g., D. praetermissa, D. purpurella, D. traunsteineri s.l., D.
baltica), and those derived from hybridization between the D. incarnata s.l. and D. maculata groups (e.g., D.
occidentalis, D. sphagnicola). Older allotetraploids are inferred to have passed through glacially induced mi-
gration bottlenecks in southern Eurasia, whereas at least some younger allotetraploids now occupying northern
Europe are inferred to have originated post-glacially and remain sympatric with their parents, a scenario that
is largely in agreement with the morphology and ecology of these allotetraploids. ITS conversion is in most
cases biased toward the maternal parent, eventually obscuring evidence of the original allopolyploidization
event because plastid haplotypes also reflect the maternal contribution. Gene flow appears unexpectedly low
among allotetraploids relative to diploids, whereas several mechanisms may assist the gene flow observed
across ploidy levels. There is good concordance between (1) the genetically delimited species that are required
to accurately represent the inferred evolutionary events and processes and (2) morphologically based species
recognized in certain moderately conservative morphological classifications previously proposed for the genus.
Further research will seek to improve sampling, especially in eastern Eurasia, and to develop more sensitive
markers for distinguishing different lineages within (1) the remarkably genetically uniform D. incarnata group
(diploids) and (2) locally differentiated populations of (in some cases unnamed) allotetraploids.
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centres of diversity in Europe and the Near East. Tax-
. INTRODUCTION onomy of these dactylorchids is widely considered to

Dactylorhiza is a taxonomically problematic,  have been complicated by relatively great morphological
evolutionarily complex genus. — Dactylorhiza  variability within species and high frequency of hybrid-
Necker ex Nevsky (1937) is a genus of terrestrial orchids ization between species. Recent opinions expressed on
with a circumboreal to warm-temperate distributionand  the total number of species occurring in Europe, North
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Africa/Macaronesia and the Near East range from six
(Sundermann, 1980) to 61 (Delforge, 2005), whereas
Averyanov (1990) estimated the number of species at 75
world-wide. The mean number of species recognized in
published studies has increased progressively through
time (reviewed by Pedersen, 1998) and is epitomized by
the jump from 49 to 61 species between the first and third
editions of Delforge (1993, 2005).

Refining, with justification, the taxonomy of the
genus has become increasingly important because many
putative Dactylorhiza species are declining and others
have probably always been endangered narrow endemics.
Reconciling morphologically and genetically circum-
scribed entities (recognized at whatever taxonomic level)
is a necessary pre-requisite for a meaningful taxonomic
hierarchy, which in turn is needed to accurately character-
ize their biogeography, ecology and conservation status.
It is therefore cause for concern that Bateman & al. (2003:
22) concluded that “For the present (and despite consid-
erable research effort), Dactylorhiza remains perhaps the
most tantalizing of the dominantly European clades of
Orchidinae, its phylogenetic history obscured partly by a
combination of iterative hybridization and chromosomal
instability, and partly by suboptimal species delimitation
and misidentifications of chosen study organisms.”

Many of the European dactylorchids belong to the
D. incarnata/maculata polyploid complex, as defined by
Hedrén (2001a, 2002), which is best viewed as consisting of
three groups of species: D. incarnatas.l., D. maculatas.l.,
and allotetraploids formed by crosses between species of
the first two complexes (Table 1). Dactylorhiza incarnata
s.I. is an aggregate of diploid taxa (eight or more named
taxa, depending on the author) that is morphologically
variable but genetically homogenous according to data

TAXON 56 (4) « November 2007: 1185-1208

from isozymes (Hedrén, 1996) and amplified fragment
length polymorphisms (AFLPs; Hedrén & al., 2001).
Dactylorhiza euxina, endemic to the Near East, is a close
relative of D. incarnata, albeit clearly distinct (Bateman,
2001; Hedrén, 2001b; Bateman & al., 2003), which is also
involved in allopolyploidization (Hedrén, 2001b). These
species are hereafter termed the D. incarnata group.

Dactylorhiza maculata s.l. (hereafter termed the D.
maculata group) is a heterogeneous set of diploid (D.
fuchsii, D. saccifera) and tetraploid (D. maculata) species
that are more readily distinguished in peripheral portions
of their respective ranges (e.g., Heslop-Harrison, 1951;
Dufréne & al., 1991; Bateman & Denholm, 2003). For
example, in the British Isles, D. fuchsii and D. maculata
are easily separated using floral and vegetative characters
and have distinct ecological preferences: the former grows
on alkaline to neutral soils that vary from unusually dry
habitats to marshland, whereas the latter is an acid-heath
specialist. In contrast, in Germany, Austria and eastern
France some taxonomists wholly reject the distinction
between D. fuchsii and D. maculata (e.g., Baumann &
Kinkele, 1988), whereas others identify as D. maculata
plants that grow in habitats that in the British Isles would
be occupied strictly by D. fuchsii. Hybridization, result-
ing in the reputedly near-sterile triploid D. xtransiens,
occurs occasionally, especially where the two taxa have
been brought into unusually close proximity, often by
anthropogenic habitat disturbance (Bateman & Haggar,
in press).

The importance of polyploidy. — Dactylorhiza
maculata has long been viewed as an autotetraploid deriv-
ative of the diploid D. fuchsii (e.g., Heslop-Harrison, 1951,
1954), a view more recently given credence by their simi-
lar allozyme profiles (Hedrén, 1996). Nonetheless, nuclear

Table 1. General taxonomy and distribution of Western European species of Dactylorhiza discussed in this paper.

Ploidy Species Distribution

Diploid D. foliosa Madeira

Diploid D. fuchsii Western Europe, North Africa and Western and Central Asia; in
the east replaced by D. saccifera

Diploid D. saccifera Italy, Greece, the Balkans

Diploid D. incarnata Western Europe, North Africa and Western and Central Asia

Diploid D. euxina Near East

Diploid D. sambucina Sweden to southern France, east to Greece and Eastern Europe

Diploid D. (Coeloglossum) viridis North Temperate Zone

Autotetraploid D. maculata Western Europe, but difficult to separate from D. fuchsii in

Allotetraploid® D. majalis s.l. (including alpestris,
elata, occidentalis, praetermissa,

purpurella, sphagnicola, traunsteineri)

Central and Eastern Europe and rare in southern Europe

Broadly distributed in Europe and Asia, with isolated occurrences

in North America and Iceland; some taxa with localized
distribution (e.g., occidentalis confined to Ireland)

®Thought to have originated as crosses between the Dactylorhiza incarnata group and the D. maculata group, but exact
parentage highly speculative and the primary focus of this study.
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ribosomal spacer DNA sequences (ITS nrDNA: Pridgeon
& al., 1997; Bateman & al., 2003), AFLPs (Hedrén &
al., 2001) and nuclear chalcone synthetase (Inda & al.,
submitted) clearly distinguish between these two taxa,
indicating that they are better viewed as independent ev-
olutionary units. Dactylorhiza maculata is more closely
related to other, more clearly distinct diploids, such as D.
foliosa (from Madeira) than it is to D. fuchsii (Hedrén &
al., 2001; Bateman & al., 2003; Inda & al., submitted).
Moreover, this relationship is reinforced by genetic data
obtained in this study, which allowed us to distinguish
easily between allopolyploids parented by the diploid D.
fuchsii from rarer allopolyploids such as D. sphagnicola
(Hedrén, 2003) and certain populations in northern Russia
(Shipunov & al., 2004) that were parented by the tetraploid
D. maculata s.str. Hence, D. maculata s.str. and D. fuchsii
are here treated as separate species, although rank is a
matter of choice and some of us (MH) would prefer to rec-
ognise these as subspecies because of the evidence found
in this and other studies that they often hybridize to such
an extent that distinguishing them becomes difficult.
Allotetraploid taxa possess a mixture of charac-
ters derived from members of the D. maculata and D.
incarnata groups and are typically referred to as the
D. majalis aggregate (sensu latissimo). Although alloz-
ymes (McLeod, 1995; Hedrén, 1996, 2001b) and AFLPs
(Hedrén & al., 2001) confirmed their hybrid origin(s),
neither technique identified precisely the parental lineages
involved in polyploid formation. Multiple origins of allo-
tetraploids have long been suspected (Heslop-Harrison,
1954, 1968). More recently, they have been demonstrated
for some taxa in Sweden using allozymes (Hedrén, 1996)
and PCR-RFLPs (Hedrén, 1996, 2003; Devos & al., 2003)
in European Russia by combining ITS sequences with
plastid and nuclear microsatellites (Shipunov & al., 2004),
and by conventional and landmark-based morphometrics
(Shipunov & Bateman, 2005). However, to obtain a more
complete picture, these intentionally parochial integrated
studies need to be expanded to a Europe-wide scale.
Relevance of plastid microsatellite and ITS
sequences. — Repeating units of short DNA motifs
termed microsatellites are abundant in the plastid genome
of higher plants (e.g., Powell & al., 1995). Their variability
makes them useful markers to study patterns of diversity
within and between closely related species (Powell &
al., 1995; Provan & al., 2001), particularly with respect
to biogeography. They have already demonstrated their
usefulness in genetic studies of orchids (Fay & Cowan,
2001; Cozzolino & al., 2003a, b; Forrest & al., 2004;
Shipunov & al., 2004). Furthermore, they are easy to
develop and can be used on degraded DNA, such as that
typically extracted from herbarium specimens (Fay &
Cowan, 2001). In orchids and most other angiosperms,
the plastid genome is exclusively maternally inherited
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(Corriveau & Coleman, 1988), so these markers have
the potential to identify the maternal parents of hybrids
and thus to indicate the direction of the crosses between
the D. incarnata and D. maculata groups that underpin
allopolyploid events. They can also provide information
on identity and geographical origin of maternal parents
and number of times allotetraploid lineages of similar
parentage have succeeded in becoming established.

The internal transcribed spacers (ITS) of nuclear
ribosomal DNA have been widely used to reconstruct
phylogenetic relationships because of their variability
and ease of amplification with nearly universal primers
(cf. Baldwin & al., 1995). They have also proved useful
in the detection of hybrids because for a period following
the hybridization event hybrids are likely to display both
parental alleles; examples include Paeonia (Paeoniaceae:
Sang & al., 1995), Miscanthus (Poaceae: Hodkinson &
al., 2002) and Anacamptis s.l. (Orchidaceae: Bateman &
Hollingsworth, 2004). However, this region can undergo
concerted evolution (Hillis & Dixon, 1991), resulting
in loss of one parental allele from taxa of hybrid origin
(Wendel & al., 1995; Alvarez & Wendel, 2003; Chase & al.,
2003). Previous molecular phylogenetic studies indicated
that this phenomenon occurs in Dactylorhiza; only a single
ITS allele was recovered by PCR from taxa known to be
allotetraploids (Pridgeon & al., 1997; Bateman & al., 2003).
Considering that ITS sequences from D. incarnata, D.
fuchsii, D. saccifera and D. maculata differ by both sub-
stitution and length polymorphisms (Bateman & al., 2003),
more detailed study could distinguish relative contributions
of putative parents to at least some allotetraploids.

Important contrasts have been observed among
groups of flowering plants in patterns of ITS evolution.
For instance, loss of one parental allele occurred in poly-
ploids estimated to have formed about 100 years ago in
Cardamine (Brassicaceae: Franzke & Mummenhoff,
1999), whereas both parental types have been maintained
in older, putatively Plio-Pleistocene allotetraploids of
Amelanchier (Rosaceae: Campbell & al., 1997) and Pae-
onia (Paeoniaceae: Sang & al., 1995). Concerted evolution
of ITS is consistently biased towards one parent in some
cases (e.g., in Cardamine: Franzke & Mummenhoff, 1999),
whereas in others it can convert in opposite directions in
different allotetraploids formed within the same genus
(e.g., Gossypium: Wendel & al., 1995; Nicotiana: Chase
& al., 2003; Clarkson & al., 2004, 2005).

Fortunately, comparison of patterns derived from ITS
sequences with those derived from plastid microsatellites
can reveal such biases. In this study, we use these two
categories of marker to study a large number of Dacty-
lorhiza accessions sampled across a wide geographical
area. Sampling was designed to determine whether we can
discriminate among putative species in the D. maculata
group, explore the extent to which they hybridize and
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identify which of them has hybridized with a member of
the D. incarnata group during formation of each identi-
fiable allotetraploid. Additional goals were to investigate
possible multiple origins of particular allotetraploid taxa
and determine which of the two species was the maternal
parent of each allotetraploid lineage. We also explored
patterns of gene conversion in ITS nrDNA and assessed
the degree to which it can provide a relative time frame
for dating formation of these allotetraploid lineages.

[l MATERIALS AND METHODS

Sampling and DNA extraction. — A total of 399
accessions was analyzed, representing 177 localities and
44 named taxa, together sampled widely across the range
of genus Dactylorhiza (Electronic supplement). Many of
the populations were analyzed for more than one acces-
sion, particularly if suspected hybrids were observed in
the field. Vouchers for many of the accessions consist of
pickled flowers (most deposited in the Herbarium at the
Royal Botanic Gardens, Kew). Samples of Gymnadenia
s.I. (including Nigritella), which is the undoubted sister
genus of Dactylorhiza, and Pseudorchis, which is a mem-
ber of the Platanthera clade that is sister to Dactylorhiza
plus Gymnadenia (Pridgeon & al., 1997; Bateman & al.,
2003, 2006), constituted outgroups in the phylogenetic
analysis of ITS sequences.

DNA was extracted from leaves or, more often, flow-
ersusing a 2x CTAB extraction protocol (Doyle & Doyle,
1987), but with some modifications. Although most DNA
extractions were taken from either fresh or silica gel-dried
materials (Chase & Hills, 1991), a few herbarium speci-
mens up to 100 years old were also used. Most DNAs were
further cleaned on a caesium chloride/ethidium bromide
gradient (1.55 g- mlI™) or with QlAquick columns (Qiagen
Ltd, Crawley, West Sussex, U.K., following the manufac-
turer’s protocol for PCR reactions), although some were
simply precipitated with ethanol and resuspended in 0.25x
TE buffer without further cleaning.

Plastid microsatellites. — \We first examined seven
plastid regions in search of length variation (e.g., mic-
rosatellites or larger insertions/deletions) by sequencing
these from a carefully selected reference set of species
that included D. fuchsii, D. maculata and D. incarnata.
This permitted us to select for further study four length-
variable sites in three regions: the trnL intron, the in-
tergenic spacer (IGS) between trnL and trnF, and the
spacer between trnS and trnG. We then developed new
primers that closely flanked the length-variable regions
producing fragments less than 250 base-pairs (bp) in
length. For sequencing, the PCR mix included 45 pL of
1.5 mM MgCl, Reddy PCR Master Mix 11X (ABgene
Ltd, Epsom, Surrey, U.K.), 2 L of 25 mM MgCl,, 1 pL of
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0.4% bovine serum albumin (BSA), 0.5 uL of each primer
(100 ng/uL), and 2 pL of template DNA. The trnL intron
and the trnL-trnF IGS were amplified using the primers
c/d and e/f of Taberlet & al. (1991), whereas the trnS-trnG
IGS was amplified using the primers of Hamilton (1999).
The following PCR program was used: 4 min at 94°C, 28
cycles of 1 min at 94°C, 1 min at 48°C and 1 min at 72°C,
with a final extension of 5 min at 72°C.

PCR products were purified using QlAquick columns
(Qiagen Ltd) following the manufacturer’s protocols. Both
strands were sequenced using Big Dye Terminator 3.0
(Applied Biosystems Inc., ABI, Warrington, Cheshire,
U.K\), and cycle sequencing products were run on an ABI
3100 Prism genetic analyzer, all following the manufac-
turer’s protocols. Sequences were edited in Sequence
Navigator and assembled in Autoassembler (both ABI).
Alignments were performed manually in PAUP* 4.01b10
(Swofford, 2001), following the recommended procedures
of Kelchner (2000).

The four length-variable plastid regions are either
short, tandem, mixed-base repeats (two) or microsatellites
(two with homopolymer repeats). More closely spaced
primers were then designed to amplify these four regions:
Dact Ms1, Dact Ms2 (both in the trnS-trnG 1GS), Orchl
(trnL-F IGS) and Dact Msf (trnL intron; all in Table 2).
One of each pair of primers was labelled with a fluores-
cent dye. The four length-variable plastid fragments were
then amplified cheaply and efficiently in a single 10 pL
PCR reaction; fragments were separated on an ABI 3100
genetic analyzer, and the length of each amplified frag-
ment was determined with Genescan 3.1 and Genotyper
version 2.0 (ABI). Each reaction contained 9.2 pL 2.5
mM MgCl, PCR Master Mix (ABgene), 0.2 pL of 0.4%
BSA, 0.1 uL of each of the eight primers (100 ng/uL), and
0.4 pL of template DNA. The program used was 4 min at
94°C, 26 cycles of 30 s at 94°C, 1 min at 55°C, and 1 min
at 72°C, with a final elongation of 10 min at 72°C. The
four target microsatellites were then combined to define
a number of plastid haplotypes. A minimum spanning
tree was drawn by hand to summarize the relationships
between the haplotypes found in the D. maculata group;
no variation was discovered in the D. incarnata group,
but this haplotype is so divergent from the others that it
was excluded from the minimum spanning tree.

nrDNA markers. — First, the entire ITS region
(ITS1 spacer plus 5.8S rDNA gene plus ITS2 spacer) was
amplified using the primers 17SE and 26SE (Sun & al.,
1994). Each 50 pL volume PCR reaction comprised 45 pL
of 1.5 mM MgCl, Reddy PCR Master Mix 1.1X (ABgene),
1 L of 0.4% BSA, 1 L of dimethylsulphoxide (DMSO),
0.8 pL of ddH,0, 0.6 L of each primer (100 ng/uL), and
1 pL of template DNA. The program used was: 2 min
at 94°C, 26 cycles of 1 min at 94°C, 1 min at 52°C, and
1 min 30 s at 72°C, with a final extension of 5 min at
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Table 2. List of the primers used in the study. All primer sequences read 5'—3".

Fragment amplified Primer Sequence or reference

Dact Ms1 trnS Hamilton (1999)
Dact Msl CGT TGG AAC AAA AGA AGT AC

Dact Ms2 Dact Ms2 GAG TAATAG TGT TTC TAA GAG
trnG Hamilton (1999)

Orchl Orchl F Fay & Cowan (2001)
Orchl R Fay & Cowan (2001)

Dact Msf Dact Msf CTA AGA AAT TAAGGG GGC TA
trnL f Taberlet & al. (1991)

Dfuch ITS.dact.fuch F ATT GAA TCG CTC CAT AAG AC
ITS.dact.fuch R ACC GCATGA CGG GCCATTCT

Dmac ITS.dact.mac F TGT GCC AAG GTA AAT ATG CA

ITS.dact.mac R

TAG GAG CAA ACA ACT CCACA

72°C. Sequencing procedures and sequence analysis were
identical to those applied to the plastid regions, except
for the addition of DMSO to the former (to reduce the
effects of paired-stem formation on strand extension).
Cloning using standard recombinant DNA techniques
was required for ITS whenever direct sequencing re-
vealed heterogeneity ascribed to the presence of multiple
alleles. Although several thousand copies of nrDNA
ITS are present in each individual dactylorchid, we will
nonetheless employ the term allele in its broadest sense to
describe each characteristic, collective nrDNA sequence
(i.e., individual repeats are most unlikely to be identical,
so this term is used to refer to the consensus sequence).
To establish the relationships of each allele, phylogenetic
analysis was performed in PAUP*4.01b10 using maximum
parsimony; heuristic searches employed 200 replicates of
random taxon entry order with tree bisection-reconnection
(TBR) swapping, and no tree limit per replicate. These
complete ITS sequences were submitted to GenBank
(DQ022863 to DQ022894).

Length variation was observed in the alignment;
moreover, some of the underlying insertions/deletions
(indels) clearly distinguished among D. incarnata, D.
fuchsii, D. saccifera and D. maculata. In our second phase
of analysis, we therefore designed primers to amplify
two short, length-variable fragments that taken together
would be diagnostic of the alleles present in each acces-
sion analyzed (Table 3). These markers are expected to
be codominant (unless gene conversion is complete) and
thus are useful for determining the parental taxa involved
in hybridization. The two polymorphic fragments in the
ITS regions were amplified in a single tube. The PCR
reaction contained 18 pL of 1.5 mM MgCl, PCR Master
Mix (ABgene), 0.4 UL of 0.4% BSA, 0.4 uL of DMSO,
0.32 uL of H,0, 0.24 pL of each of the four primers (100
ng/pL), and 0.4 pL template DNA. The PCR program
followed that for the plastid regions but with an annealing

temperature of 52°C. As in the plastid analysis, ITS frag-
ments were run on a 3100 genetic analyzer, and fragment
lengths for each accession were determined using Gene-
scan 3.1 and Genotyper 2.0. When multiple alleles were
found in a single accession, their relative proportions were
estimated using the signal strength (peak height) on the
original electropherograms. Although we recognize that
these proportions are not rigorously defined, exact ratios
are highly influenced by gene conversion and so are not
relevant to our conclusions. However, the fact that the
ratios observed are not consistent with expected simple
ratios demonstrates that conversion has occurred.

[l ResuLTs

Plastid haplotypes. — The four plastid regions were
successfully amplified in all samples, including several
herbarium samples collected up to 100 years ago. Only the
two longer (approximately 220 bp) microsatellites, Dact
Msl and Dact Ms2, failed to amplify from most DNAs
extracted from herbarium specimens. Full data for the
plastid microsatellites and ITS markers are presented in
the Electronic supplement.

When analyzed in combination, the four plastid frag-
ments defined 34 haplotypes. All species of the D. mac-
ulata s.l. group are characterized by a unique deletion in
the trnL-trnF IGS; consequently, the Dact Msf fragment
is 4 bp shorter than that of any other Dactylorhiza species.
Haplotypes recorded in the D. incarnata group differ so
much from those of other Dactylorhiza species that it is
difficult to assess how they are related to those recovered
from the D. maculata group. The D. incarnata group has
been shown to be distantly related within Dactylorhiza to
the D. maculata group in analyses of both ITS and plas-
tid DNA data (Pridgeon & al., 1997; Pillon & al., 2006).
Hence, they are omitted from the minimum spanning tree
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Table 3. Summary of the main plastid haplotypes and ITS alleles found in the sampled taxa.

Plastid haplotype ITS allele Taxa
Diploid and autotetraploid
A 11b-V fuchsii (incl. okellyi, cornubiensis)
B | maculata (incl. ericetorum, islandica)
D | foliosa
A C G W VI-111b-V saccifera
E Xa incarnata (incl. cruenta, pulchella, coccinea, ochroleuca, borealis)
K,Y Xb euxina
S1, S2 Illc sambucina
R1, R2, R3 IX romana
F Villa aristata
J XI iberica

V1,V2,V3,V4,V5 V6 VIlib, IX

Allotetraploid incarnata x maculata group

viridis (formerly Coeloglossum)

majalis s.str., praetermissa (incl. junialis), traunsteineri (incl. lapponica), baltica,
majalis s.str., praetermissa (incl. junialis), traunsteineri (incl. lapponica), alpestris,

elata (Europe), occidentalis (incl. kerryensis), sphagnicola

A 1b-V
purpurella (inc. cambrensis)
C 11b-V
nieschalkiorum
B |
O I1b elata (North Africa)

Allotetraploid euxina x maculata group

C I1b urvilleana
Allotetraploid euxina x incarnata
E Xa armeniaca

Note: For clarity, only the more common combinations of markers are shown, and rare individuals that are genetically atypical
of their morphologically circumscribed species are omitted. In the case of allotetraploids the paternal ITS allele is excluded, as

it was missing from many accessions.

that shows relationships inferred among the haplotypes;
instead, this focuses on the D. maculata group (Fig. 1),
which provides nearly all of the information that allows
genetic differentiation of allopolyploid taxa. When we
were assigning individual plants to a particular haplotype,
we did not initially characterize them according to which
species they had originally been assigned. Nonetheless, it
soon became clear that most haplotypes could readily be
ascribed to a particular species epithet.

Diploids and autopolyploids. Haplotype A occurred
in most accessions of D. fuchsii throughout its range, in-
cluding the anthocyanin-deficient D. fuchsii var. okellyi
from the western seaboard of Ireland and the anthocyanin-
rich D. fuchsii var. cornubiensis from Cornwall (south-
western England; cf. Bateman & Denholm, 1989). In
contrast, our sole accession of a similar anthocyanin-rich
form from the western seaboard of Scotland, D. fuchsii
var. hebridensis, contained the B haplotype. This is the
most common haplotype in D. maculata s.str., including
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putative varieties ericetorum from the British Isles and is-
landica from Iceland. Haplotypes of the B group all differ
from the A haplotype by a 4 bp insertion in the Dact Msl
fragment. Several other haplotypes (F, M, N, T) derived
from the B haplotype were also found in D. maculata. The
N haplotype is of particular interest as it was also found in
D. fuchsii in many parts of its range (occurring in 14 out
of the 108 samples of D. fuchsii examined). The N haplo-
type differs from the B haplotype by only a single change
and from the A haplotype by two changes. Among rarer
haplotypes, only the two samples of D. maculata from
Ireland had the M haplotype; only our single accession
from Portugal, D. maculata var. caramulensis, had the P
haplotype, and just one accession of D. maculata from
Sweden yielded the X haplotype (Fig. 1). In a few cases,
plants initially identified as D. fuchsii on morphological
criteria were shown to contain not the characteristic A
haplotype but rather the B haplotype, more typical of D.
maculata, and vice versa.
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Dactylorhiza saccifera, a diploid long considered on
morphological grounds to be closely related to D. fuchsii
(cf. Landwehr, 1977), frequently contained the A haplotype
typical of D. fuchsii. This was particularly true of samples
from Croatia, where the two species are known to form
intermediates, and Turkey. However, many accessions
of D. saccifera contained one of the rarer haplotypes, G
and W, which were not found in any other diploids and
thus are probably more characteristic of this species. One
accession of D. saccifera from Croatia had the E haplotype
characteristic of D. incarnata (see below). Although the
C haplotype differs only by a single base in one of the
microsatellite markers (homopolymer; Dact Ms2) from the
A haplotype, it was never found in D. fuchsii. However, the
C haplotype was found in a single Greek individual of D.
saccifera, the only putatively diploid accession to exhibit
this haplotype. Otherwise, the C haplotype was found only
in allotetraploids, predominating in some populations (see
below and Electronic supplement).

In contrast with the Dactylorhiza maculata group, the
diploid D. incarnata group maintained its already well-
established record for genetic homogeneity (cf. Hedrén,
1996; Bateman, 2001; Hedrén & al., 2001; Bateman & al.,
2003). Although our 55 accessions of the D. incarnata
group encompassed six putative taxa and a wide geo-
graphical range, almost all yielded the characteristic E
haplotype. The notable exception was D. euxina from the
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Fig. 1. Minimum spanning tree showing the relationships
of the plastid haplotypes of the Dactylorhiza maculata
group. All lines indicate single-step transitions. A is the
most common haplotype in the diploid species D. fuchsii,
whereas B is most common in the autotetraploid D. macu-
lata. Haplotype C was found only once in a diploid (a sin-
gle accession of D. saccifera), but it is common in several
allotetraploids.
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Near East, which had haplotypes K and Y, most similar
to haplotype E of D. incarnata. Diploid species phyloge-
netically interpolated between the D. incarnata and D.
maculata groups (Bateman & al., 2003), such as D. (for-
merly Coeloglossum) viridis, D. aristata, D. sambucina
and D. romana, maintain distinct (and, in some cases,
diverse) haplotypes.

Allopolyploids. Allotetraploids yielded ten haplo-
types, of which the most common, A, B and C, occupy
central positions in the minimum spanning tree of hap-
lotypes derived from the maculata group (Fig. 1). These
haplotypes allow division of allotetraploids into two major
categories that largely correspond to groups of morpho-
logically defined taxa:

(1) The Dactylorhiza majalis group has predominantly
the A (fuchsii-derived) and C haplotypes. It includes ac-
cessions from several morphologically defined species
groups—the majalis group (also including D. alpestris
and probably D. pratermissa), the traunsteineri group
(also including lapponica), the purpurella group (also
including D. cambrensis)—as well as the more geograph-
ically isolated D. baltica (southeastern Baltic region and
northwestern Russia) and D. nieschalkiorum (Turkey).

Except for one accession of D. saccifera from Greece,
the C haplotype was found only in some of the taxa in this
category of allotetraploids: it was present in the majority of
accessions of D. majalis (16 of 25 samples), D. alpestris (4
of 6) and D. traunsteineri (20 of 32). The C haplotype was
rarely found in D. praetermissa (only 4 of 19) and never
in D. purpurella (20). A geographical split was evident
within D. lapponica; the single British sample had the C
haplotype, whereas the three Swedish accessions had the
A haplotype typical of D. fuchsii. The N haplotype, which
occurred in a minority of populations of both D. maculata
and D. fuchsii, was also found in three accessions of D.
majalis from two populations in France, located close to
populations of D. fuchsii that also contained this unusual
haplotype.

(2) The Dactylorhiza elata group predominantly ex-
hibits the maculata B or similar haplotypes. The group
is geographically disparate, including not only the wide-
spread western Mediterranean D. elata but also the Irish
endemic D. occidentalis (incorporating D. kerryensis)
and the northwest European D. sphagnicola. Western
European D. elata reliably has the B haplotype, whereas
most North African accessions yielded either the O or Z
haplotypes. The similar X haplotype was found in one
unnamed allotetraploid putatively locally synthesized in
Sweden (M. Hedrén, unpublished data); otherwise it was
found only in a single accession of D. maculata, also from
Sweden.

The plastid haplotypes were sufficiently discrimina-
ting to allow “forensic horticulture” in the Dactylorhiza
elata group. Apparently clonal clusters of plants labelled
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D. elata that have long been cultivated at the Royal Bo-
tanic Garden Edinburgh (U.K.) and the National Botanical
Garden Glasnevin (Ireland) have the D haplotype typical
of D. foliosa, a commonly cultivated endemic from the
isolated island of Madeira. These plants are most likely
hybrids between D. elata and D. foliosa that were created
in cultivation. Several other samples of unknown origin
collected in gardens, such as the misnamed D. “fuch-
sii cv. Bressingham Bonus”, also presented evidence of
hybridization, and thus ultimately proved to be of little
value in this study. The E haplotype characteristic of the
D. incarnata group was rarely found in allotetraploids.
Unsurprisingly, it occurred in the only analyzed sample
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of D. armeniaca, an allotetraploid derived from D. euxina
x incarnata (Hedrén, 2003), although it was also found in
some accessions (4 of 20) of the northwestern European D.
purpurella. Figure 2 shows the geographical distribution
of haplotypes found in the allotetraploids.

ITS alleles. — ITS fragments were successfully am-
plified for each accession, including most targeted her-
barium samples. Sequencing of the complete ITS region
was only undertaken if a potentially new allele was ex-
pected based on a novel fragment length because we were
able to use length to distinguish among the ITS alleles of
all parental diploids and D. maculata s.str. Relationships
among the eleven ITS alleles detected in Dactylorhiza

N 0 *T & 0oz

Fig. 2. Distribution of plastid haplotypes found in the allotetraploid taxa of Dactylorhiza. Each population is represented
by at least one dot, although polymorphic populations are represented by as many dots as the number of haplotypes they
contained. To aid presentation, populations from Anglesey (northern Wales) and Gotland (southeastern Sweden) are each
represented as single populations. Symbols for haplotypes are explained on top of the figure.
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Fig. 3. Phylogenetic tree showing the relationships among the different ITS alleles found in diploid and autotetraploid Dac-
tylorhiza based on DNA sequences of the entire ITS region. All allotetraploid taxa were excluded from this tree. Alleles oc-
curring at different positions in the tree but represented by the same Roman numeral exhibit the same indel patterns and so
these produced fragments of the same size differing in base substitutions. Numbers above and below branches are branch
lengths and bootstrap percentages, respectively. Arrows indicate clades that collapse in the strict consensus tree.

are summarized in Fig. 3 (cf. Bateman & al., 2003), and
examples of trace files for one ITS fragment obtained
from five contrasting species are shown in Fig. 4.
Diploids and autopolyploids. Many putatively diploid
samples yielded two, or even three, ITS alleles. Although
presence of three alleles in a diploid appears unintuitive,

theoretically it could occur if conversion had not yet
reached completion when a plant crossed with another
plant that possessed yet another allele. Less surprisingly,
some of the allotetraploids were able to maintain three or
occasionally four ITS alleles. We assigned an approximate
ratio (1:1, 1:2 or 1:3) to accessions maintaining two or
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more high-frequency alleles (Fig. 4). In addition, we noted
cases when only a trace of an allele was present, defining
a minor allele as one at least three times less frequent
than the most abundant major allele present. No PCR bias
was observed when we performed amplifications of the
ITS fragments on samples of known ratios (i.e., when
we used a mixture of the entire ITS regions previously
cloned as template DNA, data not shown). We estimate
from the above mixing experiments that we can begin to
detect the presence of a minor allele at a frequency some-
where between 5% and 10%. However, because the alleles
overlap in their respective fragment-length patterns, in
some cases it was not possible to exclude the presence of
a small amount of one additive type. For instance, when
the 72 + 75 bp and 70 + 80 bp fragment pairs were both
found in a single accession, we could not wholly reject the
potential presence of a small proportion of the mutually
overlapping 75 + 80 bp pattern.

Most accessions of D. fuchsii had either allele \V or
[11b or both, whereas most accessions of D. maculata had
the | allele (Fig. 3). In most D. maculata var. islandica
accessions examined (4 out of 5), we found evidence for
fuchsii ITS alleles as well as the typical maculata allele
I. Allele VI was found in most samples of D. saccifera,
but in many it was mixed with allele V or allele 1l1b,
indicating a close relationship with D. fuchsii. The Xa
allele was found in all samples of D. incarnatas.l., rarely
associated with the V1llc allele, whereas the similar Xb
allele was found in the closely related D. euxina.

maculata A
incarnata A

occidentalis A A

N
elata A

Fig. 4. Examples of traces obtained with one ITS fragment
(Dmac). The autotetraploid Dactylorhiza maculata gen-
erally displays a 72-bp long fragment and the diploid D.
incarnata an 80-bp long fragment. Dactylorhiza occiden-
talis (Ireland), D. sphagnicola (northwestern Europe) and
D. elata (southwestern Europe and northwestern Africa)
are all allotetraploids formed by hybridization between
D. maculata (the maternal parent) and D. incarnata. Both
parental alleles are present in both D. occidentalis and
D. sphagnicola, but the maternal allele is dominant in the
former and the paternal allele is dominant in the latter. In
contrast, the paternal allele has been lost from D. elata.

sphagnicola
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Allotetraploids. In allotetraploids, several patterns of
ITS alleles were observed. Overall, they either possessed
between one and three alleles of the D. maculata group
plus that of the D. incarnata group or they maintained
alleles of only one of these two parental groups; in most
cases it was the D. incarnata group that was not rep-
resented. Fig. 5 shows the geographical distribution of
allotetraploids displaying ITS types from either one or
both parental lineages. This demonstrates that complete
loss of one parental allele is more common in North Africa
and southern Europe, particularly in the characteristic
allotetraploids of these regions, D. elata and D. majalis
s.str. Alleles I, 111 and V of the D. maculata group were
all frequent in the allotetraploids, whereas allele VI char-
acteristic of D. saccifera was rare.

Among allotetraploids, ITS alleles mirrored the
plastid haplotypes in revealing structured patterns that
corresponded well with groups of named taxa:

(1) Members of the Dactylorhiza majalis group (char-
acterized by fuchsii plastid haplotypes) had predominantly
the fuchsii alleles V or Il1b, but degrees of evidence of
the presumed incarnata parent varied both between and
within species. Some D. alpestris possessed only the two
fuchsii alleles, V and I11b, whereas in others these were
balanced by equal copy frequencies of incarnata allele
Xa. The single sample of D. baltica had only the fuchsii
allele V. Most of the 25 D. majalis samples had fuchsii V
and Il1b alleles, only one exhibiting a trace of the incar-
nata Xa allele. The four specimens of D. lapponica had
predominantly the fuchsii allele V, but the three accessions
from Sweden also exhibited a trace of the incarnata Xa
allele. The closely related D. traunsteineri was especially
heterogeneous. A few individuals had predominantly in-
carnata Xa alleles (some also possessed the incarnata
haplotype E), and only five accessions lacked any trace of
incarnata Xa; nonetheless, in most individuals the fuch-
sii alleles V and Il1b were dominant. Another variable
tetraploid, D. praetermissa, was distinguished mainly by
the presence in half the accessions of the saccifera allele
VI, which ranged in frequency from dominance in two
accessions, to presence as just a trace in four. Otherwise,
this species contained a mix of the two fuchsii alleles
(V and Il1b) and occasionally the incarnata allele Xa,
although this was rarely equal or dominant. Dactylorhiza
purpurella/cambrensis combined the incarnata Xa al-
lele with the fuchsii V allele, the former always with at
least comparable frequency with the latter. Shifting the
geographic focus to Turkey, our limited samples of both
D. urvilleana and D. nieschalkiorum exhibited only the
fuchsii I11b allele.

(2) Members of the Dactylorhiza elata group (char-
acterized by maculata B or related plastid haplotypes)
had dominantly maculata alleles (I, or more rarely its
variant, 1V). The notable exception was D. sphagnicola,
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which dominantly had the incarnata allele Xa, most often
occurring in a 3:1 ratio with the maculata | allele. The
single analyzed sample of D. kerryensis had no detectable
copies of the incarnata allele Xa, whereas the morpholog-
ically similar D. occidentalis s.str. showed a 3: 1 ratio of
maculata to incarnata alleles. As with plastid haplotypes,
a clear distinction was evident between accessions of D.
elata from North Africa versus those from southwestern
Europe. The nine samples from North Africa exhibited
only the maculata Illa allele (a fragment equal in length
to one of the common fuchsii alleles but showing a dif-
ferent set of substitutions) or the maculata IV allele, with
no trace of the incarnata X allele. In contrast, the six
samples of D. elata from Europe had the maculata allele
I, occasionally supplemented with a trace of the incarnata
Xa allele.

Pillon & al. « Evolution and diversification of Dactylorhiza

Correlation between patterns in ITS alleles
and plastid haplotypes. — There was a significant
correlation between plastid haplotypes and ITS types
found in the allotetraploids (p < 0.001; % test). Most
notably, haplotypes A and C were most frequently as-
sociated with ITS alleles 1llb, V and VI (fuchsii and
saccifera markers, respectively), whereas the B haplo-
type was most frequently associated with ITS allele |
(maculata markers).

The Dactylorhiza maculata group proved far more
genetically diverse than D. incarnatas.l., containing four
common ITS alleles and 16 haplotypes. Many samples
displayed both D. fuchsii and D. maculata alleles. The A
haplotype typical of D. fuchsii was found in a few acces-
sions that had been designated at the time of collection as
D. maculata, and the B haplotype typical of D. maculata

Fig. 5. Concerted evolution of ITS in allotetraploids across Europe and adjacent regions. Populations of allotetraploids
containing ITS alleles of both parental groups, D. incarnata s.I. and D. maculata s.l., are represented by blue squares.
Populations from which one parental allele has been lost are represented by red circles. To aid presentation, populations
from Anglesey (northern Wales) and Gotland (southeastern Sweden) are each represented as single populations.
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was similarly found in a few samples initially identified
as D. fuchsii. The frequency of individuals that combined
fuchsii and maculata ITS alleles showed a geographical
trend, being frequent in Austria, occasional in France
and rare in the British Isles (Fig. 6). Most D. saccifera
exhibited the A haplotype shared with D. fuchsii and had
a mixture of ITS alleles characteristic of both D. fuchsii
and itself (i.e., alleles 111 and V versus VI). However, some
Greek samples contained only the typical D. saccifera
allele VI, combined with plastid haplotypes G and W
that were not found in any other diploid species. The D.
saccifera allele VI was also found in a few D. fuchsii
from Croatia and the British Isles. In Britain, allele VI
was detected only in D. fuchsii individuals cohabiting
with allotetraploid D. praetermissa, many of which also
exhibited the V1 allele. This indicated introgression be-
tween the two species, which differ in ploidy.

TAXON 56 (4) « November 2007: 1185-1208

[l oiscussion

Comparison with previous studies of Dactylo-
rhiza that used similar molecular markers. — Our
study of plastid haplotypes shares several accessions with
a plastid PCR-RFLP study by Hedrén (2003), which in
turn overlapped taxonomically with the PCR-RFLP study
by Devos & al. (2003). Not surprisingly, all three plastid
investigations yielded broadly similar results. Our ITS
work built on previous molecular phylogenetic studies
by Pridgeon & al. (1997) and Bateman & al. (2003), but
here we have sampled far more extensively within the
target species. The main advances in our study are dense
sampling of individuals and amalgamation of the two
previously separate lines of evidence from maternally
inherited plastid regions and a biparentally inherited
nuclear region.

Fig. 6. Mixing of Dactylorhiza maculata s.str. and D. fuchsii ITS alleles across Europe. Populations of the D. maculata group
that contained ITS alleles characteristic of D. fuchsii and those characteristic of D. maculata are represented by green
squares, whereas populations that contained alleles of only one of the two species are represented by purple circles.

1196



TAXON 56 (4) » November 2007: 1185-1208

In all accessions examined in our study, a strong pos-
itive correlation was observed between particular plastid
haplotypes and particular ITS alleles. This allows us to
address Hedrén’s (2003) concern that, on the basis of plas-
tid data alone, he could not distinguish between ancestral
polymorphisms and those due to recent hybridization.
Our interpretation is predicated on the assumption that if
ancestral polymorphisms were segregating then no strong
correlation would be expected between markers from
plastid and nuclear genomes (cf. Ramsey & Schemske,
1998; Morjan & Rieseberg, 2004). Thus, for the parental
taxa D. incarnata, D. fuchsii and D. maculata, most pop-
ulations in which more than one marker was detected are
assumed to result from hybridization rather than retention
of ancestral polymorphism.

The positive correlation between ITS alleles and
plastid haplotypes constitutes further evidence that the
diploid D. fuchsii and autotetraploid D. maculata should
be regarded as distinct species, even though there is clearly
current gene flow across the divide of their different ploidy
levels in many parts of their shared range (Fig. 6: cf. Devos
& al., 2003; Hedrén, 2003; Shipunov & al., 2005). These
species undoubtedly experienced a period of isolation in
the past that was sufficient to allow them to develop their
distinct morphologies and ecological preferences; some
of their secondary contact has resulted from post-glacial
migration patterns and also recent human disturbance of
the landscape. Evidence that hybridization between these
two taxa is a recent phenomenon comes from the fact that
the mixing of haplotypes and ITS alleles now observed
in these species rarely occurs in allotetraploids. If local
populations of D. fuchsii show evidence of introgression
with D. maculata, then locally formed allotetraploids
should show similar mixtures of markers, contrary to
our observations. Locally formed allotetraploids could
have formed from single hybridizations, so it might be
expected that such allotetraploid populations would be
genetically consistent, but it would be highly unlikely that
all parental D. fuchsii/maculata parents of such hybrids
would themselves never be introgressed individuals. Most
authors are also happy to treat D. foliosa (from Madeira)
as a distinct species. This species is more closely related to
D. maculata than the latter is to D. fuchsii, so if D. foliosa
is recognized as a distinct species, then so must D. fuchsii
and D. maculata (if DNA data are considered to have a
bearing on which taxa are to be recognized).

Molecular markers developed for this study were
subsequently employed in the same laboratory as part of
a more geographically constrained study that focused on
dactylorchids of European Russia (Shipunov & al., 2004,
2005; Shipunov & Bateman, 2005). This demonstrated
that in Russia the N haplotype, which is most similar to the
B haplotype of D. maculata but is also commonly found in
D. fuchsii, occurred only in D. maculata. This observation
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supports our inference that the N haplotype originated in
D. maculata and subsequently became introgressed into
D. fuchsii. In European Russia and Georgia, populations
of the D. incarnata group contain not only the typical E
haplotype but also the similar H haplotype. Allotetraploids
occurring in northern Russia, most notably D. baltica,
exhibited a mixture of fuchsii and maculata markers, but
lacked the C haplotype commonly found in southern Eu-
rope. Overall, the patterns observed in European Russian
Dactylorhiza revealed few new haplotypes and are highly
congruent with those reported here for western European
Dactylorhiza.

Employing ITS alleles as nuclear markers. — In
this study we took advantage of indels in ITS to amplify
length-variable fragments that are usually codominant,
unless alleles are lost through concerted evolution/gene
conversion. Our technique allowed us to screen a large
number of samples, including herbarium specimens that
typically yield highly degraded DNA. We amplified both
fragments in the same reaction in small volumes, thereby
establishing a highly efficient screening method that did
not require cloning when two or more alleles were present.
Analysis of electropherograms from direct sequencing
of PCR products containing two or more alleles was
made difficult due to this length variation. However, we
found that coincidence of these indels with alleles dis-
covered earlier through sequencing (and in some cases
cloning) was sufficient to identify each allele when the
two fragments were considered together. Thus, we made
the conservative assumption that neither fragment alone
was diagnostic.

No apparent bias was detected when evaluating mix-
tures of DNA of known ratio, as previously observed by
Rauscher & al. (2002). However, we observed only infre-
quently the simple allelic ratios expected from hybrids,
indicating that in many cases copies of some alleles were
being eliminated or back-crosses were occurring; both
processes “reinforce” one allele relative to others. For ex-
ample, although one accession of D. fuchsii from Sorvilier,
Switzerland, had the expected diploid chromosome number
of 2n =40 (L. Hanson, M. Fay & M. Chase, unpublished
data), it also had the D. fuchsii Illb and V alleles in a
1:2 ratio, which would have been most parsimoniously
interpreted as indicating that this plant was triploid rather
than diploid. It also proved difficult to analyze patterns
from individuals that yielded more than two alleles be-
cause one particular fragment length can sometimes be
attributed to more than one allele (Fig. 3). Nonetheless, we
could routinely detect alleles representing only 10% of the
total copies present and could reach 5% with reasonable
confidence, showing that this technique is more sensitive
than direct sequencing (Rauscher & al., 2002).

In summary, ITS fragments were a useful tool for
determining parentage of many accessions, but observed
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ratios of alleles were not reliably informative about ploidy
levels, nor could complete absence of an allele be conclu-
sively demonstrated. Reinforcement of an allele due to
backcrossing of the progeny with one parent could also
be masked by effects of concerted evolution and/or gene
conversion.

Significance of concerted evolution in ITS. — In
allotetraploids, a degree of homogenization occurred in
the great majority of cases because parental ITS alleles
were generally detected in non-Mendelian proportions. In
many cases, one parental allele was apparently “lost” (or,
more accurately, was reduced to less than 5%-10% of all
copies present: Fig. 5). Comparison with maternally inher-
ited plastid microsatellites showed that in most cases the
missing allele was the paternal one, generally that derived
from the D. incarnata group. For example, examination of
a single accession of D. armeniaca, a recently described
allotetraploid derived from hybridization between D.
euxina and D. incarnata (Hedrén, 2001b), showed that
it lacked the euxina ITS allele but possessed a typical
incarnata plastid haplotype, indicating conversion to the
ITS allele of the maternal parent. Among allotetraploids
there were two main exceptions to the rule of maternal
conversion. Dactylorhiza sphagnicola always had a ma-
jority of the D. incarnata (Xa) ITS allele in spite of having
the B haplotype characteristic of D. maculata, whereas
the majority of samples of D. purpurella (including D.
cambrensis) combined the A haplotype of D. fuchsii with
the incarnata-derived Xa ITS allele, which occurred in
equal or more often greater frequency than the fuchsii-
derived V allele. In these two unusual cases concerted
evolution appears to be favouring the paternal ITS allele
rather than the maternal allele.

Two contrasting mechanisms are most often proposed
for concerted evolution of rDNA: unequal crossing-over
and gene conversion (Hillis & Dixon, 1991). The strong
parental bias observed in Dactylorhiza favours the hy-
pothesis of gene conversion (Hillis & al., 1991) because
it is an unlikely outcome of unequal crossing-over, nor
is it clear how a maternal effect could persist across the
several generations needed to reduce one allele to an
undetectable level. Studies of nuclear ribosomal ITS and
the 18S rDNA intron in the marine macroalga Caulerpa
(Durand & al., 2002) and of ITS and IGS in Drosophila
(Polanco & al., 1998) similarly revealed differential evo-
lution in both directions and rates of concerted evolution
that are incompatible with the unequal crossing-over
model. Moreover, homogenization of ITS demonstrably
occurs in flowering plants even when multiple ribosomal
clusters occupy different chromosomes (Wendel & al.,
1995; Chase & al., 2003).

Exploring origins and migration patterns of
allotetraploids. — One important goal of this study was
to evaluate the possibility of using ITS conversion rates
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to estimate the period of time elapsed since the initial hy-
bridization event that preceded successful establishment
of each allotetraploid lineage and thereby to explore likely
implications of contrasting dates of origin for subsequent
evolutionary histories of the resulting lineages. It soon
became apparent from our data that most of the allotet-
raploid samples from southern Europe had lost one of
their parental ITS alleles, whereas both parental alleles
were typically still detectable in allotetraploids from
the British Isles and Scandinavia (both examined in this
study) and from northern Russia (reported by Shipunov
& al., 2004; Fig. 5). Although acknowledging limits of
sensitivity of our technique for detecting low-frequency
alleles, our results were highly internally consistent;
within most study populations, either all individuals had
retained both parental types or all had lost one. Because
most northern allotetraploids have retained at least some
evidence of both parental alleles, indicating that concerted
evolution has not reached completion, we hypothesize
that they are younger than southern allotetraploids (in
making this assumption we recognize that several other
factors, most notably contrasts in effective population
sizes, can also influence rates of change in the frequency
of ITS alleles). During the Quaternary, northern Europe
experienced several cycles of thick ice cover followed
by recolonization. The whole of Scandinavia and much
of the British Isles were covered with ice 18,000 years
ago, and periglacial conditions persisted until 11,700 years
ago. Thus, it is tempting to speculate that in Europe the
northern allotetraploids became established post-glacially,
whereas the southern allotetraploids that have largely
eliminated one parental ITS allele may antedate the last
glacial maximum.

Combining the degree of gene conversion with in-
ferred parentage suggests a quadripartite classification of
western European allopolyploid dactylorchids according
to their respective parentages and putative relative dates
of origin. Older allotetraploids that lack one parental ITS
allele can be divided into those derived from hybridization
between D. incarnata s.l. and D. fuchsii (D. majalis) and
those derived from hybridization between D. incarnata
s.l. and D. maculata (D. elata). Similarly, younger allo-
tetraploids that maintain evidence of both parental ITS
alleles can be divided into those derived from hybrid-
ization between D. incarnata s.l. and D. fuchsii (e.g.,
D. praetermissa, D. purpurella, D. traunsteineri s.I., D.
baltica) and those derived from hybridization between
D. incarnata s.I. and D. maculata (e.g., D. occidentalis,
D. sphagnicola). Application of a range of molecular
techniques has further teased apart the two categories of
younger allotetraploids (e.g., Hedrén, 1996, 2001, 2002,
2003; Hedrén & al., 2001; Devos & al., 2003) and is partic-
ularly effective when combined with morphometric data
gathered from the same individuals collected for genetic
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analyses (McLeod, 1995; Bateman, 2001; Shipunov & al.,
2004; Shipunov & Bateman, 2005).

Local origins have already been inferred for some of
the younger allotetraploids, indicating that they evolved
in situ in northern regions (Hedrén & al., 2001; Hedrén,
2002; Shipunov & al., 2004; Bateman, 2006, in prep.).
However, we infer that the majority of allotetraploids have
recolonized northern areas by relatively recent migration
from the south because southern markers such as the C
haplotype are widespread in many allotetraploids but al-
most completely absent from their presumed progenitors
among diploids and autopolyploids.

If 50, the pattern of colonization inferred for the D.
incarnata/maculata complex is unusual. In most other
temperate clades that admix diploid and polyploid species,
polyploids have proven to be strong colonizers of Arctic
regions (Abbott & Brochmann, 2003), whereas their
diploid progenitors have remained much further south.
Although we differ in our respective opinions regarding
the relative average colonization abilities of the diploids,
autopolyploids and allopolyploids, it is evident that one
category is not clearly superior to the others, whereas in
many other groups polyploids are competitively superior
in the boreal zone. Possible reasons for this observation
include the fact that, contrary to many other polyploid
groups such as the fern Asplenium (Vogel & al., 1999),
polyploid species in the Dactylorhiza complex do not have
colonization ability enhanced by apomixis. Also, Dijk &
Grootjans (1998) argued that, at least in the Netherlands,
D. majalis s.str. and D. praetermissa prefer more fertile
soils than do D. maculata and D. incarnata, perhaps
indicating that these allotetraploids are only able to suc-
cessfully colonize a narrower range of habitats.

Dactylorhiza incarnata group. — As previously
observed with allozymes (Hedrén, 1996), AFLPs (Hed-
rén & al., 2001), PCR-RFLPs (Hedrén, 2003) and ITS
sequencing (Pridgeon & al., 1997; Bateman & al., 2003),
remarkably little genetic variation was observed within
the D. incarnata group (here defined broadly to include D.
euxina), even though we sampled several morphologically
circumscribed taxa that together spanned a large part of
its overall geographical range. Each individual analyzed
yielded only the plastid haplotype E, and most individuals
contained only the ITS allele Xa. However, allele VIII,
which differs from allele Xa only in possessing a 2 bp
deletion, occurred alongside allele Xa in a few samples
from Wales and Ireland. The only sample from Turkey
analyzed had two ITS alleles, both broadly resembling
allele Xa but distinguishable by several substitutions.
Extended analysis of D. incarnata s.l. from Turkey for
allozymes and plastid markers indicated that the species
is much more molecularly variable in southeastern Europe
than in northern and western Europe (Hedrén, 2001b, in
prep.). The endemic Turkish diploid D. euxina had two
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unique haplotypes and a distinct ITS allele, although as
expected both were most similar to those found in D.
incarnata.

Dactylorhiza incarnata is also profoundly distinct
from the D. maculata group as observed with allozymes
(Hedrén, 1996, 2001b), but a few cases of possible in-
trogression have been observed. The plastid haplotype
and ITS allele X of D. incarnata were found in a few
specimens of D. saccifera from Croatia. We also found
on single occasions the fuchsii ITS allele V and fuchsii
haplotype A in two samples of D. incarnata subsp. pul-
chella. Furthermore, Shipunov & al. (2004) demonstrated
that the fuchsii V allele is widespread in some populations
of D. incarnata in Russia. Using RFLPs, Hedrén (2003)
and Devos & al. (2003) also revealed some evidence of
hybridization and/or subsequent introgression between
D. incarnata and members of the D. maculata group in
Sweden. Thus, limited gene flow may still be possible
between the two divergent parental groups, either directly
or via allotetraploids as a bridge (a decidedly less readily
detected process).

Dactylorhiza maculata group. — Although
morphologically based studies are divided on whether
to recognize D. maculata, D. fuchsii and D. saccifera
as separate species (cf. Dufréne & al., 1991; Bateman &
Denholm, 1989, 2003; Stahlberg, 2007), there is growing
molecular evidence that the former two represent lineages
evolved in isolation for a considerable period of time, and
most of us (not MH) argue that all three are best regarded
as distinct species. They have distinct ITS sequences (Fig.
3: Pridgeon & al., 1997; Bateman & al., 2003) and, at least
in Sweden, are readily distinguished using AFLP data
(Hedrén & al., 2001). In this study we found markers in
both the plastid and the nuclear genomes that clearly dis-
tinguish among the three taxa. Admittedly, we have also
observed mixing of these markers in several accessions,
but we believe that this is due to secondary hybridizat-
ion and/or introgression rather than incomplete lineage
sorting. In this context, an introgression zone including
two distinct genotypes within D. maculata s.str. has re-
cently been documented in Sweden (Stahlberg, 2007).
As regards D. saccifera, increased sampling is required
from the Balkans to decide whether the taxon is distinct
from D. fuchsii; the distinctive ITS alleles (Fig. 3) found
in most accessions of D. saccifera indicates that it too
existed in isolation from both D. fuchsii and D. maculata
for a significant period of time. Another line of evidence
for their distinctiveness comes from the allotetraploids,
which allow us to infer genetic content of their parents. In
allotetraploids, markers characteristic of D. fuchsii and D.
maculata are rarely combined, indicating that at the time
and place of the formation of the allotetraploids D. fuchsii
and D. maculata were clearly distinct and not hybridizing
as extensively as they are today.
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A few samples identified as Dactylorhiza maculata
that had some D. fuchsii markers (ITS type and haplo-
type) or vice versa provide circumstantial evidence of
hybridization or introgression. Artificial hybridization
of these two species has revealed substantially greater
fertility in back-crosses than in the first generation
(Bateman & Haggar, in press). Distinguishing between
D. fuchsii and D. saccifera also proved challenging. The
most problematic situation was encountered in the Alps
region (eastern France, Switzerland and Austria: Fig. 6),
where many samples exhibited both fuchsii and maculata
markers, whereas such cases are rarer in the British Isles
and southern Scandinavia. A recent set of 20 accessions
of Dactylorhiza sampled from acidic sites that should have
been assigned to D. maculata if they were found in west-
ern Europe (M. Chase, G. Fischer & D. Dockrel, unpubl.)
showed that every one of them was a recent hybrid of D.
fuchsii and D. maculata (recent because they all exhibited
both ITS alleles). These genetic observations correlate
well with morphology, as field botanists regard the two
species as more difficult to distinguish in central Europe
(Heslop-Harrison, 1951; Dufréne & al., 1991; Bournérias
& Prat, 2005) than in marginal areas in the northwestern
part of the Continent (Bateman & Denholm, 1989, 2003;
Pedersen, 1998, 2004). Furthermore, putative species
morphologically intermediate between D. fuchsii and D.
maculata, such as D. savogiensis and D. sudetica, have
been described in the Alps and contiguous uplands (e.g.,
Delforge, 2001). Unfortunately, the ploidy of these plants
remains unknown.

The fact that several ITS types were still detected in
some accessions of the D. majalis group indicated that gene
conversion had not reached completion, in contrast with
southern allotetraploids. If taken together with the absence
of mixtures of fuchsii and maculata markers in allotetrap-
loids, this indicates that most hybridization/introgression
events involving allotetraploids occurred recently, after
the formation of at least most allotetraploids. They most
likely originated soon after the re-establishment of sym-
patry between these species when they expanded post-
glacially out of separate glacial refugia. In this context, it
is noteworthy that the alpine region, where the relationship
between D. fuchsii and D. maculata appears especially
complex, is considered as an important zone of secondary
contact among post-glacial migrants (termed a “suture
zone” by Hewitt, 2000). However, all markers used in
this study are susceptible to rapid fixation, either because
they are maternally inherited (plastids) or because they
are subject to concerted evolution (ITS). Such markers
can reveal ancient genetic exchange between species even
though the species themselves apparently remain morpho-
logically distinct, as has recently been observed among the
anthropomorphic species group within the genus Orchis
s.str. (M. Fay & al., unpublished data). Such complex
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situations are best explored further by examination of
multi-locus markers such as AFLPs and/or a selection of
biparentally inherited nuclear microsatellites/introns in
low-copy genes.

The occurrence of some populations that combine
markers typical of Dactylorhiza fuchsii and D. maculata
can be explained by recent local hybridization, despite
their contrasting ecological preferences. For example, the
karstic landscape of the Burren in western Ireland sup-
ports mainly the calcicole D. fuchsii, but small pockets of
peat-rich residual soils dotted across the limestone support
the calcifuge D. maculata, bringing the two species into
intimate proximity. They also frequently meet in mixed
habitats in Scandinavia (Stahlberg, 2007). Admittedly,
many other sites where the two species co-occur reflect
recent anthropogenic disturbance. Nonetheless, combina-
tions of markers were also found in several populations
where only one of the two species was found, most notably
in Iceland where D. fuchsii is not known to now occur.
Some samples confidently identified as either D. fuchsii or
D. maculata were found to contain markers characteristic
of the other species. For example, near Llangurig, Wales,
plants with morphology characteristic of D. maculata and
growing in typically acid soils yielded markers of both
species, even though D. fuchsii was not observed growing
in the immediate vicinity. Introgression between the two
taxa is a more likely explanation of such observations,
probably occurring in both directions.

In terms of likely underlying processes, transfer of
markers from the diploid Dactylorhiza fuchsii to the tet-
raploid D. maculata is possible via unreduced gametes in
D. fuchsii. Although D. maculata is generally accepted
to be an autotetraploid (Hagerup, 1944; Heslop-Harri-
son, 1951), few reliable chromosome counts are available
(confusion regarding which morphological characters
best distinguish between D. fuchsii and D. maculata casts
doubts on some determinations; e.g., Tanako & Kamen-
oto, 1984). Thus, D. maculata may still be diploid in some
parts of its range. Conversely, other observations indicate
that in central Europe tetraploidy may occur in the typi-
cally diploid D. fuchsii (e.g., Hedrén, 2002; Bournérias &
Prat, 2005; Stahlberg, 2007). Also, Hagerup (1944) noted
the occasional development of haploid embryos without
fertilization in both D. fuchsii and D. maculata s.str., re-
sults later confirmed by Heslop-Harrison (1957). If such
embryos were viable they could permit gene flow from
(auto)tetraploids to diploids. Thus, the theoretical barrier
to gene flow between the putatively diploid D. fuchsii and
tetraploid D. maculata is probably a less profound obstacle
than is generally supposed; moreover, such a barrier has
been overcome in Taraxacum, for example (Menken &
al., 1995).

Except for a unique ITS allele, Dactylorhiza saccifera
appears to be connected to D. fuchsii by populations with
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atypical combinations of plastid markers. Dactylorhiza
fuchsii ITS alleles were found in D. saccifera in Croatia,
Turkey and Greece, which was the only region where
some samples of D. saccifera (1) did not have markers
typically found in D. fuchsii and (2) exhibited distinct
haplotypes. We also detected variable populations of D.
saccifera from Greece. In addition, we found the D. sac-
cifera ITS allele V1 in a few samples of D. fuchsii, not only
from Croatia where the two species co-occur, but also in
Britain, 600 km from the nearest extant populations of D.
saccifera (as explained below, this apparent enigma could
reflect occasional hybridization between D. fuchsii and
D. praetermissa).

Several observations support the origin of D. maculata
in North Africa or the Iberian Peninsula. The first is the
occurrence only in the Macaronesian island of Madeira
of D. foliosa, a diploid species that resembles D. maculata
both morphologically and especially genetically (Pridgeon
& al., 1997; Hedrén & al., 2001). We also found a distinct
ITS allele in the samples of D. elata from Morocco (one
parent of which was probably maculata-like); this differs
from the common D. maculata allele only in lacking a
distinctive 8 bp indel and thus appears to be plesiomorphic
relative to all ITS alleles recovered from the D. maculata
group. We also identified several unique but maculata-like
plastid haplotypes in dactylorchids from this region. Cor-
responding morphological diversity is indicated by rec-
ognition by some authorities of three segregates from D.
maculata s.str. that are endemic to Morocco, Algeria and
the Iberian Peninsula—D. maurusia, D. battandieri and
D. caramulensis, respectively (Delforge, 2005)—although
they are at best only subtly morphologically distinct.

Dactylorhiza saccifera may have had a refugium in
Greece because this is the only area where genetically it is
both diverse and relatively distinct from D. fuchsii; also,
Greece is the centre of the present range of D. saccifera.
Although we did not include samples of D. saccifera from
Italy, another refugial candidate, preliminary results from
another study have not revealed unusual genetic diversity
in this region (M. Hedrén, unpublished data). We have
obtained even less evidence regarding possible refugia
for D. fuchsii because this species showed little variation
in plastid microsatellites (A or, less frequently, N). The
fact that an additional haplotype, Q, is common in Russia
(Shipunov & al., 2004) tentatively indicates an eastern
refugium, although the Balkans and Italy also remain
credible candidates.

Allotetraploids. — It is noteworthy that we detected
little evidence of gene flow between allotetraploids, in-
dicating presence of effective barriers to gene exchange.
This is perhaps not surprising, given that extensive arti-
ficial crosses conducted among Swedish dactylorchids
by Malmgren (1992) yielded fertile F2 plants only when
one of the parents was Dactylorhiza incarnata s.l. or
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D. sphagnicola, the latter with the D. incarnata ITS alleles
predominating instead of the typical (for allotetraploids)
alleles of the D. maculata group. Bateman & Haggar (in
press) created artificial hybrids between D. praetermissa
and D. purpurella that showed high fertility in both the
first generation and backcrosses. Accessions of D. maja-
lis s.str. or D. traunsteineri exhibiting maculata markers
were rare, and no fuchsii markers were observed in D.
elata or D. occidentalis accessions, even though allotet-
raploids of these two categories often grow sufficiently
close to each other to expect occasional cross-pollinations.
However, allotetraploid populations that mix fuchsii and
maculata haplotypes have recently been reported from
Sweden (Hedrén, 2003) and are also suspected to occur
in Scotland (R.M. Bateman, unpub.).

Species in the Dactylorhiza maculata group, most
commonly D. fuchsii, were maternal parents of the great
majority of allotetraploids. As observed in polyploids of
other families (Soltis & Soltis, 1999), allotetraploid dac-
tylorchids of western Europe have several origins; the num-
ber of plastid haplotypes indicates at least ten independent
allopolyploid events. However, three haplotypes occurred
in most allotetraploids, having successfully spread across
most of the range of the genus: the most common fuchsii
haplotype (A), the most common maculata haplotype (B),
and the C haplotype, the last concentrated in the south and
of an uncertain parental derivation. In addition, it is clear
that, although it is always reported to be a tetraploid, D.
maculata (or a genetically similar entity) was the maternal
parent of several allotetraploid taxa.

The C haplotype was found in only one putatively dip-
loid individual, a Greek Dactylorhiza saccifera. However,
this accession also contained the common saccifera ITS
allele VI, whereas most allotetraploids that possess the C
haplotype have the fuchsii allele I11b. Thus, our current
(albeit limited) sampling suggests that D. saccifera is not
likely to be a parent of these allotetraploids. It seems more
likely that the diploid species that originally donated the
C haplotype to D. majalis and similar allotetraploids is
extinct or at least has become sufficiently rare to escape
our Europe-wide sampling effort. The C haplotype has a
central position in the minimum spanning tree between
the A haplotype characteristic of D. fuchsii and the G
and W haplotypes found in some D. saccifera from the
Greek mainland (Fig. 1). The presumed diploid species
that once exhibited the C haplotype was probably for-
merly widespread, considering that the C haplotype has
been found in allotetraploid samples stretching from the
Pyrenees to the Tibetan plateau. However, this haplotype
declines in frequency northward, being rare in Scandi-
navia and absent from European Russia (Shipunov & al.,
2004). This suggests either that the hypothetical ancestral
diploid became rare before the end of the last glaciation
or that it failed to migrate northward following glaciation.
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In either case, its contribution to formation of relatively
young northern allotetraploids was less important, be-
ing replaced in this role by typical D. fuchsii. Virtual
absence of the C haplotype from sampled diploids and its
preponderance in several allotetraploids suggests either
that these allotetraploids were not formed in their present
geographical locations or (less likely) raises the possibil-
ity that older allotetraploids may have contributed to the
origin of younger allotetraploids (e.g., D. majalis s.str. to
D. alpestris).

Most allotetraploids with A or C haplotypes had fuch-
sii or saccifera ITS alleles, and most possessing the B
haplotype had the maculata ITS allele; the only exceptions
to this pattern were a few samples combining maculata
haplotypes with fuchsii ITS alleles. Putative allotetraploid
accessions containing both fuchsii and maculata ITS al-
leles were rarely detected, indicating that introgression
between D. maculata and allotetraploids is an infrequent
event, even though they share the same ploidy level. The
only exceptions found in this study were from Iceland,
where four out of five accessions contained both macu-
lata and fuchsii markers, despite the supposed absence
from Iceland of D. fuchsii. Also, Shipunov & al. (2004)
reported the presence in northern Russia of allotetraploid
populations that do not have D. incarnata as one of their
parents but rather appear to be derived from hybridization
between D. fuchsii and D. maculata. Nonetheless, almost
all allotetraploids lack evidence of prior hybridization or
introgression between D. fuchsii and D. maculata, and
allotetraploids do not currently appear to be operating as
a genetic bridge linking D. fuchsii and D. maculata.

Moreover, the characteristic Dactylorhiza saccifera
ITS allele VI was rarely found in allotetraploids examined
here, indicating a limited contribution of D. saccifera to
their formation. However, the distribution of this allele is
unusual. It also occurs sporadically and typically at low
frequencies across the range of D. fuchsii (e.g., Croatia,
U.K)), frequently in D. praetermissa (U.K.; slightly more
than 50% of the accessions sampled) and is present in
single populations of D. majalis (France) and D. purpu-
rella (Wales). Thus, although D. saccifera is presently
limited to the eastern Mediterranean and the Near East,
it is possible that it once extended into western Europe.
Alternatively, presence of the saccifera allele in other
taxa, particularly D. fuchsii, could be the result of local
hybridization with sympatric D. praetermissa. However,
this hypothesis similarly requires a subsequent major
contraction in the range of D. praetermissa to its present
northwestern European enclave, after presumably origi-
nating in, and migrating out of, the Mediterranean region.
This seems unlikely, given that D. praetermissa is here
characterized as a young allotetraploid.

Hedrén (2001b) inferred that Dactylorhiza saccifera
or a closely related taxon was one parent of the allotet-
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raploids characteristic of Turkey because it is the only
member of the D. maculata group that currently occurs in
the region. However, different ITS alleles were found in D.
fuchsii and D. saccifera, suggesting that the actual parent
of these allotetraploids may instead be a hypothesized
diploid that is either extinct or as yet undiscovered.

Our data suggest that several widely recognized
allotetraploid taxa have multiple origins, including the
exceptionally widely distributed Dactylorhiza majalis.
In the case of D. purpurella, presence of both D. fuchsii
and D. incarnata haplotypes indicates that hybridization
events that accompanied polyploidization occurred in
both directions or that introgression with its parents has
contributed to additional haplotypes after the original
allotetraploid was formed.

The case of D. traunsteineri and the closely related
D. lapponica is especially instructive. Samples of each
taxon from the British Isles, Scandinavia (the type re-
gion for D. lapponica) and the Alps (the type region for
D. traunsteineri) are readily distinguished using either
haplotypes or ITS alleles, but within each region, there
are no significant differences between the two supposed
species, conclusions previously indicated by studies of
allozymes (Hedrén, 1996, 2002, 2003; Bateman, 2001)
and AFLPs (Hedrén & al., 2001). It is clearly advisable
to synonymize D. lapponica with D. traunsteineri across
their respective (and virtually coincident) ranges. How-
ever, the systematist must then make the difficult decision
of whether to (1) recognize a single allopolyploid species
that has at least three independent evolutionary origins
(Table 3) or (2) recognize three separate species that are
putatively distinct, one species located in each of the three
geographical regions. Perhaps the most appropriate arbiter
is whether putative segregated species can be recognized
using morphological characters with an acceptable level of
confidence. On this basis, Bateman (2006) assigned to D.
traunsteinerioides those dactylorchid populations in the
British Isles that had received considerable conservation
attention because they had previously been ascribed to D.
traunsteineri and/or to D. lapponica.

However, even given extensive population genetic
data and focusing on a restricted geographical area, it can
prove challenging to determine with sufficient confidence
the number of origins of a particular allotetraploid taxon.
For example, Swedish populations of D. sphagnicola col-
lectively have only one origin according to plastid markers
(see also Hedrén, 2003), but allozyme data indicate at
least two origins (Hedrén, 1996), and fine-scale analysis
of additional plastid markers indicates multiple origins
(Hedrén, Nordstrom & Stahlberg, unpub.).

Inferring the current evolutionary status of
allotetraploids. — One of the most important questions
raised by the Dactylorhiza incarnata/maculata complex
is why allotetraploids that we can demonstrate to have the
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same pair of parental species can exhibit substantially dif-
ferent morphological, ecological and distributional prop-
erties. Examples of such contrasts include D. sphagnicola
versus D. occidentalis versus D. elata (all derived from
hybridization between D. maculata and D. incarnata)
and D. traunsteineri s.I. versus D. purpurella versus D.
majalis (all derived from hybridization between D. fuchsii
and D. incarnata). There are two contrasting hypotheses
that could, either separately or in combination, explain
differentiation and specialization among allopolyploids.

(1) Post-origin differentiation of allotetraploids.
This hypothesis is predicated on (1) presumed ability of
differential directional or disruptive selection to fine-
tune to contrasting ecologies the products of different
polyploidization events between the same two parental
species, and (2) using contrasting degrees of ITS gene
conversion to provide relative dates of different poly-
ploidization events occurring between the same pair of
parental species.

For example, the Irish endemic D. occidentalis is
a recently synthesized allotetraploid, whereas the more
widespread Iberian/North African D. elata is judged to be
substantially older. Its greater age since formation offers
selection more time to operate on the D. elata phenotypes
and thereby to mould them to fit a distinct set of ecological
parameters. This hypothesis predicts that D. occidentalis
(a taxonomically controversial species, once tentatively
misidentified as an autopolyploid: cf. Bateman & al., 2003,
Bateman, 2006) should still exhibit a blend of parental
traits, whereas the longer existence of D. elata should have
allowed it sufficient time to diverge from parental traits,
thereby becoming more specialized and thus more readily
recognizable as a bona fide species, a process perhaps
assisted by a greater degree of genomic re-organization
and integration of the two parental genomes (Parakonny
& Kenton, 1995). Furthermore, if older allotetraploids,
such as D. elata and D. majalis s.str., did indeed originate
before the last glacial maximum, then they would have
responded to profound climate change by migrating first
southward and then northward, presumably alongside
their progenitors. If so, they would likely have passed
through at least one genetic bottleneck, which would have
further homogenized their genetic, morphological and
ecological characteristics (cf. Cozzolino & al., 2003b).
In contrast, the more recently synthesized allotetraploids
such as D. occidentalis and D. praetermissa, hypothesized
to have originated during the Holocene, should appear
more heterogeneous.

An analogous but probably older case is provided
by allotetraploid species complexes in Nicotiana (Sol-
anaceae). In section Polydiclieae (sensu Knapp & al.,
2004), evidence from plastid (Chase & al., 2003) and ITS
(Clarkson & al., 2004) DNA sequences indicated that two
allotetraploid species, N. clevelandii and N. quadrival-
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vis, were generated from the same parental lineages at
different times in their history. These two species now
exhibit contrasting floral morphologies and ecologies and
have only a slight range overlap in southwestern North
America. Given sufficient time, some such entities be-
come distinct evolutionary lineages that can undergo sub-
sequent phyletic radiations; examples include Nicotiana
section Repandae, which consists of four species with a
common origin, and section Suavolentes, which consists
of approximately 25 species with a common origin (Chase
& al., 2003; Clarkson & al., 2004).

(2) Pre-origin differentiation of parents of allote-
traploids. A contrasting hypothesis can also explain our
ability to distinguish morphologically and ecologically
most of the independent lineages resulting from sepa-
rate polyploidization events between the Dactylorhiza
incarnata and D. maculata groups, as indicated by genetic
data. This focuses more on the considerable degrees of
morphological, ecological and, at least in the case of the
D. maculata group, genetic differentiation that is evident
among various named infraspecific taxa within the two
parental groups (Bateman, 2001, 2006, in prep.).

Within the British Isles alone, D. incarnata is rep-
resented by at least six named infraspecific entities: one
a specialist of sphagnum bogs and another favouring
depressions in dune systems, whereas the remaining
four are characteristic of alkaline fens and marshes,
occasionally extending into alkaline/neutral meadows
(Heslop-Harrison, 1953; Bateman & Denholm, 1985).
Moreover, D. fuchsii exhibits the widest habitat toler-
ance of any British orchid species. In addition to named
infraspecific specialists of upland and coastal pastures,
populations inhabiting chalk and limestone grasslands,
alkaline/neutral pastures, and alkaline/neutral marshes
and woodland can all be distinguished by subtle mor-
phological differences (Bateman & Denholm, 1989). This
degree of largely correlated variation in morphology and
habitat preference offers much potential for iteratively
generating contrasting allotetraploid lineages from within
the same pair of parental species.

Consider, for example, the three moisture-loving
allotetraploids that are shown by genetic data to be the
progeny of D. incarnata and D. maculata s.str. As its
name suggests, D. sphagnicola preferentially inhabits
acid sphagnum bogs in Scandinavia and northwestern
Continental Europe, where the most likely maternal
parent is the sphagnum bog specialist D. maculata
elodes, inheriting from it not only morphologies subtly
distinct from those of the parental nominate race but also
its extreme ecological preference (cf. Hedrén, 2003). In
contrast, the Irish endemic D. occidentalis tolerates
soils varying from slightly acidic to slightly alkaline,
especially when subject to anthropogenic disturbance.
Both its morphology and ecology suggest that it is more
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likely derived from hybridization between D. incarnata
incarnata and D. maculata ericetorum. Lastly, the rela-
tively poorly researched, putatively older allotetraploid D.
elata from southwestern Iberia and northwestern Africa
prefers alkaline pastures and seepages and is hypothe-
sized to represent hybridization between D. incarnata
s.l. (this species also has been under-researched in the
southwestern extreme of its range) and one or more of the
regional segregates of D. maculata (D. caramulensis, D.
battandieri or D. maurusia). The rare Moroccan endemic
D. maurusia is of particular interest in this context, as it is
morphologically reminiscent of D. elata (e.g., Landwehr,
1977) and, unusually for D. maculata s.str., it inhabits
alkaline soils. Separate evolutionary origins are likely
for D. elata populations in Iberia and North Africa (the
source of the holotype; Pedersen & al., 2003), given their
distinct haplotypes and contrasting converted ITS alleles
(Table 4), and the tendency to taxonomically separate
French and Spanish populations from the nominate race
as infraspecific taxa on the grounds of their subtly dis-
tinct morphologies (e.g., Nieschalk & Nieschalk, 1972;
Landwehr, 1977; Delforge, 2005).

This contrasting hypothesis thus relies on the as-
sumption that these allotetraploids originated locally, in
sympatry with their parents, and reflect both the detailed
morphology and habitat preferences of those parents.
This scenario implies that our ability to distinguish sub-
tly genetically distinct lineages derived repeatedly from
the same two parental species relies more on selection
honing the parents prior to polyploid formation than
post-derivational selection honing allotetraploid lineages,
thereby down-playing the evolutionary (and taxonomic)
importance of relative periods elapsed since the initiating
hybridization event. This hypothesis is best evaluated by
studying morphologically and genetically diagnosable
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allotetraploids that show unusually restricted distributions
and so are assumed to be of recent origin (Bateman, 2006;
Bateman & al., in prep.).

B concLusions

Systematic implications of the genetic patterns.
— Of the three species aggregates considered here, the
least taxonomically controversial within western Europe,
at least at the species level, has been the Dactylorhiza
incarnata group. With few exceptions (notably Delforge,
2005), authorities have been inclined to award species
status only to D. cruenta among the named taxa within
this group, and this elevation is not upheld by genetic data
(Hedrén, 1996; Hedrén & al., 2001; Bateman & al., 2003).
Treatments of the D. maculata group have historically
ranged from recognition as a single species (most com-
mon if study focuses on regions suspected of sustaining
relatively high levels of introgression) through frequent
recognition of three core species (D. maculata, D. fuchsii
and D. saccifera) to further division into local endemic
species (Delforge, 2005). Not surprisingly, classification
of allotetraploids has been most controversial, varying
from most (Sundermann, 1980) or many (So6, 1980) in-
fraspecific taxa allocated to a single aggregate species, D.
majalis, through to highly divided treatments recognizing
many species, most poorly morphologically differentiated
(Averyanov, 1991; Delforge, 2005).

Our own framework taxonomy (Table 4), which cur-
rently excludes local endemics, is a compromise between
these extremes. It represents an attempt to synthesize
previous, morphology-based taxonomic circumscriptions
(and associated knowledge of ecological preferences and
geographical distributions) with more process-oriented

Table 4. Recommended framework classification of European members of the Dactylorhiza incarnata and D. maculata
groups and their derived polyploid complex. The plastid haplotype and ITS allele(s) given here are considered typical
of each taxon. This summary focuses on well-established species, incorporating regional endemics but excluding local

endemics.
Taxon Ploidy and parentage Plastid ITS allele(s)
haplotype
D. fuchsii (incl. cornubiensis, okellyi) — 2X A V, lllb
D. maculata (incl. ericetorum, elodes)  4X (autotetraploid) B |
D. saccifera 2X C,G,W VI
D. incarnatas.l. (all W European taxa) 2X E Xa
D. euxina 2X Y, K Xb
D. elata (North Africa) maculata x incarnata o I11a, completely converted
D. elata (Europe) maculata x incarnata B I, most accessions completely converted
D. occidentalis (incl. kerryensis) maculata x incarnata B I dominant, X in 1/3 or fewer copies
D. sphagnicola maculata x incarnata B Xa dominant, I in 1/3 or fewer copies
D. majalis (incl. alpestris) fuchsii x incarnata A C V, 111b, most accessions completely converted
D. praetermissa (incl. junialis) fuchsii/saccifera x incarnata A, C V, 11b, VI
D. traunsteineri (incl. lapponica) fuchsii x incarnata A C V, b, rarely with Xa dominant
D. purpurella (incl. cambrensis) fuchsii x incarnata A V, l11b, rarely with Xa dominant
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data on occurrence of gene flow (hybridization/introgres-
sion), both currently and, by inference, in the past. Divid-
ing species more finely risks generating taxa that cannot
reliably be distinguished using morphology or, in many
cases, DNA data, thereby hampering communication and
undermining conservation initiatives (the conservation
implications of our data are explored elsewhere; Pillon &
al., 2006). Alternatively, further amalgamating species into
“super-species”, in response to evidence of past or present
gene flow among component species, obscures our hard-
won knowledge of evolutionary processes operating within
this allopolyploid complex. In particular, morphological,
genetic and ecological differentiation evident among both
diploids and tetraploids, and evolutionary causes of that
differentiation, would no longer be represented in an un-
necessarily crude taxonomy (consider the extreme cases of
lumping certain highly calcicolous lineages of D. fuchsii
with the highly calcifugic D. maculata elodes or combin-
ing ecologically contrasting allopolyploids D. traunstein-
eri and D. sphagnicola). Our insights into the probable
contrasting ages of different allotetraploid lineages, and
their consequently contrasting genetic compositions and
evolutionary trajectories, would also be ignored.

Current co-existence of various diploids and tetrap-
loids in at least some regions without genetic mixing in-
dicates that barriers to gene flow are operating. Moreover,
differentiation of the taxa has strong ecological as well
as geographical components, suggesting that these taxa
are likely to operate as distinct evolutionary units and
hence supporting our use of the species category. Even
where significant gene flow is evident between species in
portions of their present ranges (e.g., between D. fuchsii
and D. maculata in the Alps), there is evidence that these
species have in the past experienced periods of isolation
that allowed them to develop substantially different plastid
haplotypes and ITS alleles. Furthermore, the significant
correlation between ITS alleles and plastid haplotypes
in both diploids and tetraploids means it is unlikely that
lineage sorting rather than hybridization/introgression
is responsible for the heterogeneity of these markers ob-
served in Dactylorhiza.

With regard to future field collecting, our primary ob-
jectives are to intensify sampling in likely glacial refugia
in Iberia/North Africa, Italy, Greece and the Caucasus
and to extend application of our markers eastward into
Asia. Novel haplotypes were found in material from the
Russian Caucasus (Shipunov & al., 2004), and a set of just
four probable allotetraploids collected in Georgia revealed
no less than three unique haplotypes (albeit clearly related
to those previously found in Dactylorhiza fuchsii). Only
one of our 399 samples was located east of the Urals; this
sample, from the Tibetan Plateau, reassuringly yielded
a haplotype and ITS profile typical of the dominantly
European D. majalis.
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Limitations to the application of the genetic
markers used in this study. — The two sets of ge-
netic markers used here, plastid DNA fragment length
variants and ITS nrDNA alleles, are both subject to being
“captured”: plastid DNA due to its uniparental (maternal)
pattern of inheritance and I TS because of concerted evolu-
tion/gene conversion, which over time erodes evidence of
its original biparental inheritance. Although parentage of
young hybrids can be determined with confidence using
these markers, older hybrids will not appear to be hy-
brids because of conversion of one ITS allele. Moreover,
because conversion usually favours the maternal allele,
maternally inherited plastid DNA markers are likely
to generate sets of relationships concordant with those
derived from maternally biased converted ITS alleles,
thereby further camouflaging evidence of past hybrid-
ization events. However, for the majority of accessions
studied here, we were able to use these markers to identify
hybrids and determine which species was the maternal
parent. An unexpected benefit of quantifying ITS fre-
quencies was that the degree of loss of the less favoured
ITS allele indicates relative ages of allotetraploid taxa.
This is especially advantageous when, as here, the same
pair of parental taxa has generated multiple allotetraploid
lineages at different times in the past.

Admittedly, even these two complementary sets of
markers appear too conservative to adequately interpret
some fine-scale patterns. For example, the considerable
morphological variation evident within the D. incarnata
group has proven invisible to most markers used so far,
with the exception of a single allozyme locus (cf. Hedrén,
1996; Bateman, 2001) and one promising plastid region
(M. Hedrén, unpublished data). Better markers within
the D. incarnata group are essential if we are to evaluate
our hypothesis that various allotetraploids are still being
synthesized locally (e.g., Hedrén, 2003: Bateman, 2006;
Bateman & al., in prep.). Similarly, if parental markers
are too highly conserved we cannot detect cases of local
hybridization and introgression. The results of this study
provide a tantalizing glimpse into the complex evolution
and ecology of these widespread European orchids, which
nonetheless remain a serious challenge to the taxono-
mist.
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